cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A351154 a(n) is the permanent of the n X n matrix M(n) that is defined as M[i,j,n] = A351153(n, min(i, j)) + abs(i - j).

Original entry on oeis.org

1, 1, 7, 169, 10388, 1324344, 305668180, 116145817656, 67770421715800, 57594670663866124, 68393751368082128320, 109765035421144948709232, 231657098706747226470685920, 628412716450312334529486247152, 2149132484027947970192241804640128, 9113755489596517688997731211571700256
Offset: 0

Views

Author

Stefano Spezia, Feb 02 2022

Keywords

Comments

Conjectures: (Start)
det(M(0)) = det(M(1)) = 1 and det(M(n)) = -(n - 2)! for n > 1.
abs(det(M(n))) = abs(A159333(n-2)). (End)

Examples

			a(3) = 169:
    1    2    3
    2    4    5
    3    5    6
a(4) = 10388:
    1    2    3    4
    2    5    6    7
    3    6    8    9
    4    7    9   10
		

Crossrefs

Programs

  • Mathematica
    A351153[n_,k_]:=n(k-1)-k(k-3)/2; M[i_,j_,n_]:=A351153[n,Min[i,j]]+Abs[i-j]; a[n_]:=Permanent[Table[M[i,j,n],{i,n},{j,n}]]; Join[{1},Array[a,15]]
  • PARI
    t(n, k) = n*(k-1) - k*(k-3)/2; \\ A351153
    a(n) = matpermanent(matrix(n, n, i, j, t(n, min(i, j)) + abs(i - j))); \\ Michel Marcus, Feb 03 2022

A374021 Row products of A351153.

Original entry on oeis.org

1, 1, 3, 24, 400, 11700, 536256, 35631232, 3245577984, 388702800000, 59265098200000, 11212953038217216, 2578459154484215808, 708372581870426497024, 229171184991141120000000, 86242576440372042240000000, 37355382389967084527220883456, 18452600861204793901808906698752
Offset: 0

Views

Author

Stefano Spezia, Jun 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A351153[n_,k_]:=n(k-1)-k(k-3)/2; a[n_]:=Product[A351153[n,k],{k,n}]; Array[a,18,0]
  • PARI
    a(n) = vecprod(vector(n, k, n*(k - 1) - k*(k - 3)/2)); \\ Michel Marcus, Jun 25 2024

Formula

a(n) = (-1/2)^n*Pochhammer((b(n)-2*n-1)/2, n)*Pochhammer((-b(n)-2*n-1)/2, n), where b(n) = sqrt(A033996(n) + 9).
a(n) ~ sqrt(Pi) * 2^(n+2) * n^(2*n - 3/2) / exp(2*n). - Vaclav Kotesovec, Jun 27 2024

A136107 Number of representations of n as the difference of two positive triangular numbers.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 4, 1, 2, 4, 2, 1, 4, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 5, 2, 2, 2, 3, 3, 4, 2, 2, 4, 3, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 3, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 3, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 3, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 7
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of partitions of n into consecutive parts greater than 1. - Omar E. Pol, Feb 07 2022
a(n) is the number of solutions of the equations 2(x-1)y-(x-3)x=2(n+1) for 0A351284; y-values in A351285. Also the number of times n+1 appears in A351153. - Stefano Spezia, Feb 12 2022
Equivalence with Stefano Spezia solutions: The equation 2(x-1)y-(x-3)x=2(n+1) can be rewritten (y+1-x/2)(x+1)=n; proof by solving both for y. So solutions factorize n, and since x+1 must be an integer and y+1-x/2 must be an integer, x must be even. So (x+1)|n means we are looking for odd divisors of n, which is the A001227 term of the Alekseyev formula. The correction by A010054 in the Alekseyev formula means: if n is a triangular number, the solution x=y+1 where x>y is not counted by Spezia. - R. J. Mathar, Feb 12 2022

Examples

			a(2) = 1 because 3 - 1 = 2,
a(5) = 2 because 6 - 1 = 15 - 10 = 5,
a(9) = 3 because 10 - 1 = 15 - 6 = 45 - 36 = 9, etc.
For n = 21 the four partitions of 21 into consecutive parts are [21], [11, 10], [8, 7, 6] and [6, 5, 4, 3, 2, 1]. The last partition contains 1 as a part, hence there are only three partitions of 21 into consecutive parts whose parts are greater than 1, so a(21) = 3. - _Omar E. Pol_, Feb 07 2022
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1}, While[k < n, If[ IntegerQ[ Sqrt[8 n + 4 k (k + 1) + 1]], c++ ]; k++ ]; c]; Table[f@n, {n, 105}]
  • PARI
    a(n) = numdiv(n>>valuation(n, 2)) - ispolygonal(n, 3); \\ Michel Marcus, Jan 08 2024

Formula

G.f.: Sum_{n>=1} x^((n^2+3*n)/2)/(1-x^n). - Vladeta Jovovic, May 13 2008
a(n) = A001227(n) - A010054(n). - Max Alekseyev, May 13 2009

A351609 Maximal absolute value of the determinant of an n X n symmetric matrix using the integers 1 to n*(n + 1)/2.

Original entry on oeis.org

1, 1, 7, 152, 7113, 745285, 94974369
Offset: 0

Views

Author

Stefano Spezia, Feb 14 2022

Keywords

Comments

Upper bounds for the next terms can be found by considering all possibilities of choosing matrix entries on the diagonal and applying Gasper's determinant theorem (see references in A085000): a(7) <= 22475584128, a(8) <= 6634478203404, a(9) <= 2647044512044258. - Hugo Pfoertner, Feb 18 2022

Examples

			a(3) = 152:
   2    4    6
   4    5    1
   6    1    3
a(4) = 7113:
   2    6    8    9
   6    5   10    1
   8   10    3    4
   9    1    4    7
		

Crossrefs

Formula

a(n) = max(abs(A351147(n)), A351148(n)). - Hugo Pfoertner, Feb 16 2022

Extensions

a(5)-a(6) from Hugo Pfoertner, Feb 16 2022

A358806 a(n) is the minimal determinant of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.

Original entry on oeis.org

1, 0, -4, -110, -5072, -488212, -86577891
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2022

Keywords

Examples

			a(2) = -4:
    [0, 2;
     2, 1]
a(3) = -110:
    [1, 3, 5;
     3, 4, 0;
     5, 0, 2]
		

Crossrefs

Cf. A358807 (maximal), A358808 (minimal permanent), A358809 (maximal permanent).

A358807 a(n) is the maximal determinant of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.

Original entry on oeis.org

1, 0, 2, 86, 5911, 652189, 82173814
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2022

Keywords

Examples

			a(2) = 2:
    [1, 0;
     0, 2]
a(3) = 86:
    [0, 3, 4;
     3, 1, 5;
     4, 5, 2]
		

Crossrefs

Cf. A358806 (minimal), A358808 (minimal permanent), A358809 (maximal permanent).

A358808 a(n) is the minimal permanent of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.

Original entry on oeis.org

1, 0, 1, 33, 2425, 357046, 92052610
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2022

Keywords

Examples

			a(2) = 1:
    [0, 1;
     1, 2]
a(3) = 33:
    [0, 1, 2;
     1, 3, 4;
     2, 4, 5]
a(4) = 2425:
  [0, 2, 3, 1;
   2, 8, 7, 4;
   3, 7, 9, 6;
   1, 4, 6, 5]
		

Crossrefs

Cf. A358806 (minimal determinant), A358807 (maximal determinant), A358809 (maximal).

Extensions

a(4) corrected and a(5)-a(6) from Hugo Pfoertner, Dec 07 2022

A358809 a(n) is the maximal permanent of an n X n symmetric matrix using all the integers from 0 to n*(n + 1)/2 - 1.

Original entry on oeis.org

1, 0, 4, 186, 21823, 4569098, 1713573909
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2022

Keywords

Examples

			a(2) = 4:
    [0, 2;
     2, 1]
a(3) = 186:
    [0, 4, 5;
     4, 2, 3;
     5, 3, 1]
		

Crossrefs

Cf. A358806 (minimal determinant), A358807 (maximal determinant), A358808 (minimal).

Extensions

a(5)-a(6) from Hugo Pfoertner, Dec 07 2022

A351284 Irregular triangle read by rows: the n-th row gives the x-values of the solutions of the equation 2*(x - 1)*y - (x - 3)*x = 2*n for 0 < x <= y.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 4, 2, 2, 3, 2, 4, 5, 2, 3, 2, 6, 2, 3, 4, 2, 5, 2, 3, 2, 4, 2, 3, 6, 2, 5, 2, 3, 4, 7, 2, 2, 3, 2, 4, 5, 6, 2, 3, 2, 2, 3, 4, 7, 2, 5, 2, 3, 6, 8, 2, 4, 2, 3, 2, 5, 2, 3, 4, 7, 2, 6, 2, 3, 2, 4, 5, 8
Offset: 3

Views

Author

Stefano Spezia, Feb 06 2022

Keywords

Comments

Equivalently, the n-th row gives the column indices corresponding to n in the triangle A351153.

Examples

			Triangle begins:
  2;
  2;
  2;
  2, 3;
  2;
  2, 3;
  2;
  2, 3, 4;
  ...
		

Crossrefs

Cf. A341829, A351153, A136107 (row length or solutions number), A351285 (y-values).

Programs

  • Mathematica
    Table[r={};For[d=1,d
    				

A351285 Irregular triangle read by rows in which row n gives the y-values of the solutions of the equation 2*(x - 1)*y - (x - 3)*x = 2*n for 0 < x <= y.

Original entry on oeis.org

2, 3, 4, 5, 3, 6, 7, 4, 8, 9, 5, 4, 10, 11, 6, 12, 5, 13, 7, 14, 5, 15, 8, 6, 16, 17, 9, 18, 7, 6, 19, 10, 20, 6, 21, 11, 8, 22, 7, 23, 12, 24, 9, 25, 13, 7, 26, 8, 27, 14, 10, 7, 28, 29, 15, 30, 11, 9, 8, 31, 16, 32, 33, 17, 12, 8, 34, 10, 35, 18, 9, 8, 36, 13
Offset: 3

Views

Author

Stefano Spezia, Feb 06 2022

Keywords

Comments

Equivalently, the n-th row gives the row indices corresponding to n in the triangle A351153.

Examples

			Triangle begins:
  2;
  3;
  4;
  5, 3;
  6;
  7, 4;
  8;
  9, 5, 4;
  ...
		

Crossrefs

Cf. A341830, A351153, A136107(row length or solutions number), A351284 (x-values).

Programs

  • Mathematica
    Table[r={};For[d=1,d
    				
Showing 1-10 of 15 results. Next