cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006007 4-dimensional analog of centered polygonal numbers: a(n) = n(n+1)*(n^2+n+4)/12.

Original entry on oeis.org

0, 1, 5, 16, 40, 85, 161, 280, 456, 705, 1045, 1496, 2080, 2821, 3745, 4880, 6256, 7905, 9861, 12160, 14840, 17941, 21505, 25576, 30200, 35425, 41301, 47880, 55216, 63365, 72385, 82336, 93280, 105281, 118405, 132720, 148296, 165205, 183521
Offset: 0

Views

Author

Keywords

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n*(n+1)*(n^2+n+4)/12: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
    
  • Mathematica
    f[n_]:=n^3;lst={};s=0;Do[s+=(f[n]+f[n+1]+f[n+2]);AppendTo[lst,s/9],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009 *)
    Table[2Binomial[n+2,4]+Binomial[n+1,2],{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,5,16,40},40] (* Harvey P. Dale, Sep 30 2011 *)
  • PARI
    a(n)=n*(n+1)*(n^2+n+4)/12 \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: (1+x^2)/(1-x)^5.
a(n) = 2*binomial(n + 2, 4) + binomial(n + 1, 2).
a(n) = A061316(n)/3 = A061315(n, 3) = sqrt(A061318(n)-A061316(n)).
a(0)=0, a(1)=1, a(2)=5, a(3)=16, a(4)=40, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Sep 30 2011
For n>0, a(n) = (A000217(n-1)^2 + A000217(n)^2 + A000217(n+1)^2 - 1)/9. - Richard R. Forberg, Dec 25 2013
Sum_{n>=1} 1/a(n) = 15/4 - tanh(sqrt(15)*Pi/2)*Pi*sqrt(3/5). - Amiram Eldar, Aug 23 2022
E.g.f.: exp(x)*(12 + 48*x + 42*x^2 + 12*x^3 + x^4)/12. - Stefano Spezia, Aug 31 2023

Extensions

More terms from Henry Bottomley, Apr 24 2001

A086601 Triangular numbers + 1 squared.

Original entry on oeis.org

1, 4, 16, 49, 121, 256, 484, 841, 1369, 2116, 3136, 4489, 6241, 8464, 11236, 14641, 18769, 23716, 29584, 36481, 44521, 53824, 64516, 76729, 90601, 106276, 123904, 143641, 165649, 190096, 217156, 247009, 279841, 315844, 355216, 398161
Offset: 0

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Also number of n X 2 0..1 arrays with rows and columns unimodal (cf. A223620, column 2). - Georg Fischer, Nov 03 2021

Examples

			a(5) = (t(5)+1)^2 = 16^2 = 256.
		

Crossrefs

Programs

  • Maple
    A086601 := proc(n)
        (n+2+n^2)^2 /4 ;
    end proc:
    seq(A086601(n),n=0..20) ; # R. J. Mathar, May 14 2014
  • Mathematica
    (Accumulate[Range[0,40]]+1)^2 (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,16,49,121},40] (* Harvey P. Dale, Jan 14 2020 *)
  • PARI
    w=vector(40,i,(t(i)+1)^2)

Formula

a(n) = (A000217(n) + 1)^2.
a(n) = (binomial(2+n,2) - binomial(n,1))^2. - Zerinvary Lajos, May 30 2006, corrected by R. J. Mathar, May 14 2014
a(n) = A000124(n)^2. - Omar E. Pol, Oct 30 2007
a(n) = 1 + A061316(n). Zerinvary Lajos, Apr 25 2008
G.f.: ( -1+x-6*x^2+x^3-x^4 ) / (x-1)^5. - R. J. Mathar, May 14 2014

A061314 Table read by descending antidiagonals where T(n,k) = T(n,k-1) + T(n,k-1)^2/k^2 and T(n,0)=n.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 0, 3, 6, 3, 0, 4, 15, 12, 4, 0, 5, 40, 48, 20, 5, 0, 6, 140, 304, 120, 30, 6, 0, 7, 924, 6080, 1720, 255, 42, 7, 0, 8, 24640, 1484736, 186620, 7480, 483, 56, 8, 0, 9, 12415040, 61235956672, 1393267596, 3504380, 26404, 840, 72, 9, 0, 10
Offset: 0

Views

Author

Henry Bottomley, Apr 24 2001

Keywords

Comments

Not always an integer.

Examples

			The table begins:
    0,       0,       0,       0,          0,...
    1,       2,       3,       4,          5,...
    2,       6,      15,      40,        140,...
    3,      12,      48,     304,       6080,...
    4,      20,     120,    1720,     186620,...
    5,      30,     255,    7480,    3504380,...
    6,      42,     483,   26404,   43599605,...
    7,      56,     840,   79240,  392515340,...
    8,      72,    1368,  209304, 2738219580,...
    ...
		

Crossrefs

Rows include A000004, A000027 and A061322. Columns include A001477, A002378, A061316, A061318 and A061320.

Formula

T(n, k) = T(n, k-1) + A061315(n, k)^2.

A061318 Column 3 of A061314.

Original entry on oeis.org

0, 4, 40, 304, 1720, 7480, 26404, 79240, 209304, 499140, 1095160, 2242504, 4332640, 7966504, 14036260, 23829040, 39156304, 62512740, 97268904, 147902080, 220270120, 321933304, 462529540, 654208504, 912130600, 1255036900, 1705896504, 2292638040, 3048972304, 4015313320
Offset: 0

Views

Author

Henry Bottomley, Apr 24 2001

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-4x (1+x+22x^2+22x^3+22x^4+x^5+x^6)/(x-1)^9,{x,0,30}],x] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,4,40,304,1720,7480,26404,79240,209304},30] (* Harvey P. Dale, Jul 04 2023 *)

Formula

a(n) = A061316(n) + A006007(n)^2 = 4*A061319(n).
G.f. -4*x*(1+x+22*x^2+22*x^3+22*x^4+x^5+x^6)/(x-1)^9. - R. J. Mathar, Aug 11 2012

Extensions

a(25)-a(29) from Stefano Spezia, Aug 31 2023
Showing 1-4 of 4 results.