Original entry on oeis.org
0, 4, 40, 304, 1720, 7480, 26404, 79240, 209304, 499140, 1095160, 2242504, 4332640, 7966504, 14036260, 23829040, 39156304, 62512740, 97268904, 147902080, 220270120, 321933304, 462529540, 654208504, 912130600, 1255036900, 1705896504, 2292638040, 3048972304, 4015313320
Offset: 0
-
CoefficientList[Series[-4x (1+x+22x^2+22x^3+22x^4+x^5+x^6)/(x-1)^9,{x,0,30}],x] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,4,40,304,1720,7480,26404,79240,209304},30] (* Harvey P. Dale, Jul 04 2023 *)
Original entry on oeis.org
0, 5, 140, 6080, 186620, 3504380, 43599605, 392515340, 2738219580, 15571795365, 74962059260, 314303754380, 1173239918240, 3966582090380, 12313551210485, 35488970536640, 95826048090080, 244240228906965, 591327577603980, 1367189227172480, 3032433080571020
Offset: 0
A061316
a(n) = n*(n+1)*(n^2 + n + 4)/4.
Original entry on oeis.org
0, 3, 15, 48, 120, 255, 483, 840, 1368, 2115, 3135, 4488, 6240, 8463, 11235, 14640, 18768, 23715, 29583, 36480, 44520, 53823, 64515, 76728, 90600, 106275, 123903, 143640, 165648, 190095, 217155, 247008, 279840, 315843, 355215, 398160, 444888
Offset: 0
-
a:=n->sum((n+j^3),j=0..n): seq(a(n),n=0..36); # Zerinvary Lajos, Jul 27 2006
with(combinat):a:=n->sum(fibonacci(4,i), i=0..n): seq(a(n), n=0..36); # Zerinvary Lajos, Mar 20 2008
-
s=0;lst={};Do[s+=n^3+n*2;AppendTo[lst,s],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 04 2009 *)
Table[n(n+1)(n^2+n+4)/4,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1}, {0,3,15,48,120},40] (* Harvey P. Dale, May 03 2011 *)
-
a(n) = n*(n + 1)*(n^2 + n + 4)/4 \\ Harry J. Smith, Jul 21 2009
A061315
Array read by antidiagonals: T(n,k)=T(n,k-1)*(T(n,k-1)+k-1)/k with T(n,1)=n.
Original entry on oeis.org
1, 1, 2, 1, 3, 3, 1, 5, 6, 4, 1, 10, 16, 10, 5, 1, 28, 76, 40, 15, 6, 1, 154, 1216, 430, 85, 21, 7, 1, 3520, 247456, 37324, 1870, 161, 28, 8, 1, 1551880
Offset: 1
1,1,1,1,1,1,1,1,1,1,...
2,3,5,10,28,154,3520,1551880,267593772160,7160642690122633501504,...
3,6,16,76,1216,247456,61235956672/7,468730299066952899064/49,...
4,10,40,430,37324,232211266,7703153350084336,7417321441864447837991470393906,
5,15,85,1870,700876,81871778626,957569733696568731376,...
6,21,161,6601,8719921,12672844307641,22942997549397847673832961,...
7,28,280,19810,78503068,1027122012987994,...
A061322
a(n) = a(n-1) * (1 + a(n-1)/n^2) with a(0) = 2.
Original entry on oeis.org
2, 6, 15, 40, 140, 924, 24640, 12415040, 2408343949440, 71606426901226335015040, 51274803735606705472274088614112357905277056, 21728144612603201307908899563300049012978385050783094682272184269369267136230071558272
Offset: 0
a(2) = 6 * (1 + 6/2^2) = 15.
-
Block[{n = 0}, NestList[#*(1 + #/++n^2) &, 2, 11]] (* Paolo Xausa, Apr 17 2024 *)
-
{a(n) = local(x); if( n<1, 2 * (n==0), (x = a(n-1)) + (x/n)^2)} /* Michael Somos, Apr 02 2006 */
Showing 1-5 of 5 results.
Comments