A006008 Number of inequivalent ways to color vertices of a regular tetrahedron using <= n colors.
0, 1, 5, 15, 36, 75, 141, 245, 400, 621, 925, 1331, 1860, 2535, 3381, 4425, 5696, 7225, 9045, 11191, 13700, 16611, 19965, 23805, 28176, 33125, 38701, 44955, 51940, 59711, 68325, 77841, 88320, 99825, 112421, 126175, 141156, 157435, 175085, 194181, 214800, 237021, 260925, 286595, 314116, 343575
Offset: 0
References
- J.-P. Delahaye, 'Le miraculeux "lemme de Burnside"', 'Le coloriage du tetraedre' pp 147 in 'Pour la Science' (French edition of 'Scientific American') No.350 December 2006 Paris.
- Martin Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- R. Gugisch, A. Kerber, R. Laue, M. Meringer and C. Ruecker, Kombinatorische Chemie, eine Herausforderung für Mathematik und Infomatik, Spektrum 1/02, 64-67, 2002.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Polyhedron Coloring.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[(n^4 + 11*n^2 )/12: n in [0..40]]; // Vincenzo Librandi, Aug 12 2011
-
Maple
A006008 := n->1/12*n^2*(n^2+11); A006008:=-z*(z+1)*(z**2-z+1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[(n^4+11n^2)/12,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,5,15,36},40] (* Harvey P. Dale, Aug 11 2011 *)
-
PARI
apply( {A006008(n)=(n^4+11*n^2)/12}, [0..50]) \\ M. F. Hasler, Jan 26 2020
Formula
a(n) = (n^4 + 11*n^2)/12. (Replace all x_i's in the cycle index with n.)
Binomial transform of [1, 4, 6, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(0)=0, a(1)=1, a(2)=5, a(3)=15, a(4)=36. - Harvey P. Dale, Aug 11 2011
a(n) = C(n,1) + 3C(n,2) + 3C(n,3) + 2C(n,4). Each term indicates the number of tetrahedra with exactly 1, 2, 3, or 4 colors. - Robert A. Russell, Dec 03 2014
a(n) = binomial(n+3,4) + binomial(n,4). - Collin Berman, Jan 26 2016
a(n) = A324999(3,n).
E.g.f.: (1/12)*exp(x)*x*(12 + 18*x + 6*x^2 + x^3). - Stefano Spezia, Jan 26 2020
Sum_{n>=1} 1/a(n) = (6 + 22*Pi^2 - 6*sqrt(11)*Pi*coth(sqrt(11)*Pi))/121. - Amiram Eldar, Aug 23 2022
Comments