cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A004110 Number of n-node unlabeled graphs without endpoints (i.e., no nodes of degree 1).

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 78, 588, 8047, 205914, 10014882, 912908876, 154636289460, 48597794716736, 28412296651708628, 31024938435794151088, 63533059372622888758054, 244916078509480823407040988, 1783406527599529094009748567708, 24605674623474428415849066062642456
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of unlabeled mating graphs with n nodes. A mating graph has no two vertices with identical sets of neighbors. - Tanya Khovanova, Oct 23 2008

References

  • F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.
  • F. Harary and E. Palmer, Graphical Enumeration, (1973), compare formula (8.7.11).
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A123551.
Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A006024 (number of labeled mating graphs with n nodes), A129584 (bi-point-determining graphs).
If isolated nodes are forbidden, see A261919.
Cf. A000088.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t * k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a[n_] := Sum[permcount[p] * 2^edges[p] * Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; a[0] = 1;
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
  • PARI
    \\ Compare A000088.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); sum(k=1, n, forpart(p=k, s+=permcount(p) * 2^edges(p) * polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); s} \\ Andrew Howroyd, Sep 09 2018

A006024 Number of labeled mating graphs with n nodes. Also called point-determining graphs.

Original entry on oeis.org

1, 1, 1, 4, 32, 588, 21476, 1551368, 218608712, 60071657408, 32307552561088, 34179798520396032, 71474651351939175424, 296572048493274368856832, 2448649084251501449508762880, 40306353989748719650902623919616
Offset: 0

Views

Author

Keywords

Comments

A mating graph is one in which no two vertices have identical adjacencies with the other vertices. - Ronald C. Read and Vladeta Jovovic, Feb 10 2003
Also number of (n-1)-node labeled mating graphs allowing loops and without isolated nodes. - Vladeta Jovovic, Mar 08 2008

Examples

			Consider the square (cycle of length 4) on vertices 1, 2, 3 and 4 in that order. Join a fifth vertex (5) to vertices 1, 3 and 4. The resulting graph is not a mating graph since vertices 1 and 3 both have the set {2, 4, 5} as neighbors. If we delete the edge (1,5) then the resulting graph is a mating graph: the neighborhood sets for vertices 1, 2, 3, 4 and 5 are respectively {2,4}, {1,3}, {2,4,5}, {1,3,5} and {3,4} - all different.
		

References

  • R. C. Read, The Enumeration of Mating-Type Graphs. Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006025.
Cf. bi-point-determining graphs: labeled A129583, unlabeled A129584; connected bi-point-determining graphs: labeled A129585, unlabeled A129586; phylogenetic trees: labeled A000311, unlabeled A000669.
Cf. A007833, A079306 (connected)

Programs

  • Mathematica
    a[n_] := Sum[StirlingS1[n, k] 2^Binomial[k, 2], {k, 0, n}];
    Array[a, 15] (* Jean-François Alcover, Jul 25 2018 *)
  • PARI
    a(n)=n!*polcoeff(sum(k=0,n,2^(k*(k-1)/2)*log(1+x+x*O(x^n))^k/k!),n) \\ Paul D. Hanna, May 20 2009

Formula

a(n) = Sum_{k=0..n} Stirling1(n, k)*2^binomial(k, 2). - Ronald C. Read and Vladeta Jovovic, Feb 10 2003
E.g.f.: Sum_{n>=0} 2^(n(n-1)/2)*log(1+x)^n/n!. - Paul D. Hanna, May 20 2009

Extensions

More terms from Ronald C. Read and Vladeta Jovovic, Feb 10 2003
a(0)=1 prepended by Andrew Howroyd, Sep 09 2018

A141580 Number of unlabeled non-mating graphs with n vertices.

Original entry on oeis.org

0, 1, 2, 6, 18, 78, 456, 4299, 68754, 1990286, 106088988, 10454883132, 1904236651216, 641859005526860, 401547534010157680, 467956331904669136874, 1019785644052109276678788, 4171197546082606538129623140
Offset: 1

Views

Author

Tanya Khovanova, Aug 19 2008

Keywords

Comments

a(n) is the difference between A000088 (number of graphs on n unlabeled nodes) and A004110 (number of n-node graphs without endpoints)
A non-mating graph has two vertices with an identical set of neighbors.
The adjacency matrix of a non-mating graph is degenerate.
Also the number of unlabeled graphs with n vertices and at least one endpoint. - Gus Wiseman, Sep 11 2019

Examples

			A cycle with 4 vertices is a non-mating graph. In the standard ordering of vertices, vertices 1 and 3 are both connected to vertices 2 an 4, thus having an identical sets of neighbors.
From _Gus Wiseman_, Sep 11 2019: (Start)
Non-isomorphic representatives of the a(2) = 1 through a(5) non-mating graph edge-sets:
  {12}  {12}     {12}           {12}
        {13,23}  {12,34}        {12,34}
                 {13,23}        {13,23}
                 {13,24,34}     {12,35,45}
                 {14,24,34}     {13,24,34}
                 {14,23,24,34}  {14,24,34}
                                {12,34,35,45}
                                {13,24,35,45}
                                {14,23,24,34}
                                {14,25,35,45}
                                {15,25,35,45}
                                {12,25,34,35,45}
                                {14,25,34,35,45}
                                {15,23,24,35,45}
                                {15,25,34,35,45}
                                {13,24,25,34,35,45}
                                {15,24,25,34,35,45}
                                {15,23,24,25,34,35,45}
(End)
		

Crossrefs

The labeled version is A327379.

Programs

  • Mathematica
    k = {}; For[i = 1, i < 8, i++, lg = ListGraphs[i] ; len = Length[lg]; k = Append[k, Length[Select[Range[len], Length[Union[ToAdjacencyMatrix[lg[[ # ]]]]] != i &]]]]; k

Formula

a(n) = A000088(n) - A004110(n).

Extensions

Extended by R. J. Mathar, Sep 12 2008

A006025 Number of labeled mating digraphs with n nodes.

Original entry on oeis.org

1, 1, 3, 54, 3750, 1009680, 1058347920, 4375678520640, 71934792452208000, 4719774805970453006400, 1237727595442264073683462080, 1298006134163762816201615178698880, 5444432200219729912412940250057668378240
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006024.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[StirlingS1[n , k]*2^(k^2 - k), {k, 0, n}];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 16 2019 *)
  • PARI
    a(n)=n!*polcoeff(sum(k=0,n,2^(k*(k-1))*log(1+x+x*O(x^n))^k/k!),n) \\ Paul D. Hanna, May 20 2009

Formula

a(n) = Sum_{k=0..n} Stirling1(n, k)*2^(k^2-k). - Vladeta Jovovic, Feb 11 2003
E.g.f.: Sum_{n>=0} 2^(n*(n-1))*log(1+x)^n/n!. - Paul D. Hanna, May 20 2009

Extensions

More terms from Vladeta Jovovic, Feb 11 2003
a(0)=1 prepended by Andrew Howroyd, Sep 09 2018

A327379 Number of labeled non-mating-type graphs with n vertices.

Original entry on oeis.org

0, 1, 4, 32, 436, 11292, 545784, 49826744, 8647819328, 2876819527744, 1848998498567936, 2312324942899031040, 5659406410382924819712, 27230994319259100289485568, 258465217554621196991878652416, 4851552662579126853087143276476928
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A mating-type graph has all different rows in its adjacency matrix.

Crossrefs

The unlabeled version is A141580.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!UnsameQ@@AdjacencyMatrix[Graph[Range[n],#]]&]],{n,5}]
  • PARI
    a(n) = {2^binomial(n,2) - sum(k=0, n, stirling(n, k, 1)*2^binomial(k,2))} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A006125(n) - A006024(n). - Andrew Howroyd, Sep 11 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019
Showing 1-5 of 5 results.