cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006043 A traffic light problem: expansion of 2/(1 - 3*x)^3.

Original entry on oeis.org

2, 18, 108, 540, 2430, 10206, 40824, 157464, 590490, 2165130, 7794468, 27634932, 96722262, 334807830, 1147912560, 3902902704, 13172296626, 44165935746, 147219785820, 488149816140, 1610894393262, 5292938720718, 17322344904168, 56485907296200, 183579198712650, 594796603828986
Offset: 0

Views

Author

Keywords

Comments

Column 2 of square array A152818. - Omar E. Pol, Jan 05 2009
In [Bach et al., Section 9], 2*a(n-2) counts the "small diagrams". - Eric M. Schmidt, Sep 23 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = (n+2)*(n+1)*3^n. - Zerinvary Lajos, Apr 25 2007, corrected by R. J. Mathar, Mar 14 2011
a(n) = 2*A027472(n+3) = A116138(n+1)/3. - R. J. Mathar, Mar 14 2011
a(n) = 2*A000217(n+1)*A000244(n). - Zak Seidov, Mar 14 2011
E.g.f.: exp(3*x)*(2 + 12*x + 9*x^2). - Stefano Spezia, Jan 01 2023
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 3 - 6*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 12*log(4/3) - 3. (End)