cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A022166 Triangle of Gaussian binomial coefficients (or q-binomial coefficients) [n,k] for q = 2.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 35, 15, 1, 1, 31, 155, 155, 31, 1, 1, 63, 651, 1395, 651, 63, 1, 1, 127, 2667, 11811, 11811, 2667, 127, 1, 1, 255, 10795, 97155, 200787, 97155, 10795, 255, 1, 1, 511, 43435, 788035, 3309747, 3309747, 788035, 43435, 511, 1
Offset: 0

Views

Author

Keywords

Comments

Also number of distinct binary linear [n,k] codes.
Row sums give A006116.
Central terms are A006098.
T(n,k) is the number of subgroups of the Abelian group (C_2)^n that have order 2^k. - Geoffrey Critzer, Mar 28 2016
T(n,k) is the number of k-subspaces of the finite vector space GF(2)^n. - Jianing Song, Jan 31 2020

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   7,    7,     1;
  1,  15,   35,    15,     1;
  1,  31,  155,   155,    31,    1;
  1,  63,  651,  1395,   651,   63,   1;
  1, 127, 2667, 11811, 11811, 2667, 127, 1;
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. A006516, A218449, A135950 (matrix inverse), A000225 (k=1), A006095 (k=2), A006096 (k=3), A139382.
Cf. this sequence (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24).
Analogous triangles for other q: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15).

Programs

  • Magma
    q:=2; [[k le 0 select 1 else (&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Nov 17 2018
  • Maple
    A005329 := proc(n)
       mul( 2^i-1,i=1..n) ;
    end proc:
    A022166 := proc(n,m)
       A005329(n)/A005329(n-m)/A005329(m) ;
    end proc: # R. J. Mathar, Nov 14 2011
  • Mathematica
    Table[QBinomial[n, k, 2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
    (* S stands for qStirling2 *) S[n_, k_, q_] /; 1 <= k <= n := S[n - 1, k - 1, q] + Sum[q^j, {j, 0, k - 1}]*S[n - 1, k, q]; S[n_, 0, ] := KroneckerDelta[n, 0]; S[0, k, ] := KroneckerDelta[0, k]; S[, , ] = 0;
    T[n_, k_] /; n >= k := Sum[Binomial[n, j]*S[n - j, n - k, q]*(q - 1)^(k - j) /. q -> 2, {j, 0, k}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 08 2020, after Vladimir Kruchinin *)
  • PARI
    T(n,k)=polcoeff(x^k/prod(j=0,k,1-2^j*x+x*O(x^n)),n) \\ Paul D. Hanna, Oct 28 2006
    
  • PARI
    qp = matpascal(9,2);
    for(n=1,#qp,for(k=1,n,print1(qp[n,k],", "))) \\ Gerald McGarvey, Dec 05 2009
    
  • PARI
    {q=2; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
    
  • Sage
    def T(n,k): return gaussian_binomial(n,k).subs(q=2) # Ralf Stephan, Mar 02 2014
    

Formula

G.f.: A(x,y) = Sum_{k>=0} y^k/Product_{j=0..k} (1 - 2^j*x). - Paul D. Hanna, Oct 28 2006
For k = 1,2,3,... the expansion of exp( Sum_{n >= 1} (2^(k*n) - 1)/(2^n - 1)*x^n/n ) gives the o.g.f. for the k-th diagonal of the triangle (k = 1 corresponds to the main diagonal). - Peter Bala, Apr 07 2015
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k). - Peter A. Lawrence, Jul 13 2017
T(m+n,k) = Sum_{i=0..k} q^((k-i)*(m-i)) * T(m,i) * T(n,k-i), q=2 (see the Sved link, page 337). - Werner Schulte, Apr 09 2019
T(n,k) = Sum_{j=0..k} qStirling2(n-j,n-k)*C(n,j) where qStirling2(n,k) is A139382. - Vladimir Kruchinin, Mar 04 2020

A218449 Gaussian binomial coefficient [2*n-1,n] for q=2, n>=0.

Original entry on oeis.org

1, 1, 7, 155, 11811, 3309747, 3548836819, 14877590196755, 246614610741341843, 16256896431763117598611, 4274137206973266943778085267, 4488323837657412597958687922896275, 18839183877670041942218307147122500601235
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2012

Keywords

Comments

Compare to: [x^n] Product_{k=0..n-1} 1+2^k*x = 2^(n*(n-1)/2).

Examples

			The coefficients in Product_{k=0..n-1} 1/(1 - 2^k*x) begin:
n=0: [(1)];
n=1: [1,(1), 1, 1, 1, 1, 1, 1, 1, 1, ...];
n=2: [1, 3,(7), 15, 31, 63, 127, 255, 511, 1023, ...];
n=3: [1, 7, 35,(155), 651, 2667, 10795, 43435, 174251, ...];
n=4: [1, 15, 155, 1395,(11811), 97155, 788035, 6347715, ...];
n=5: [1, 31, 651, 11811, 200787,(3309747), 53743987, ...];
n=6: [1, 63, 2667, 97155, 3309747, 109221651,(3548836819), ...];
n=7: [1, 127, 10795, 788035, 53743987, 3548836819, 230674393235,(14877590196755), ...]; ...
the coefficients in parenthesis give the initial terms of this sequence;
an adjacent diagonal forms the Gaussian binomial coefficients [2*n,n] for q=2:
[1, 3, 35, 1395, 200787, 109221651, 230674393235, ...] = A006098.
		

Crossrefs

Programs

  • Mathematica
    Table[QBinomial[2n-1, n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 12 2016 *)
  • PARI
    {a(n)=polcoeff(prod(k=0,n-1,1/(1-2^k*x +x*O(x^n))),n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = [x^n] Product_{k=0..n-1} 1/(1 - 2^k*x).
a(n) ~ c * 2^(n*(n-1)), where c = A065446. - Vaclav Kotesovec, Sep 22 2016

A384038 Number of 2n X 2n matrices M over GF(2) such that the column space of M is equal to the null space of M.

Original entry on oeis.org

1, 3, 210, 234360, 4047865920, 1092146608143360, 4650098142288472473600, 314462403262051153026062745600, 338960040818652280796119613717033779200, 5834618256563872511581456247120956565738854809600, 1605370810586153268821245248112723240374305354675084328960000
Offset: 0

Views

Author

Geoffrey Critzer, May 17 2025

Keywords

Comments

Let M be a 2n X 2n matrix over GF(2) such that the column space of M is equal to the null space of M. Then M is idempotent and nullity(M) = n and index(M) = 2. If M' is similar to M then the column space of M' equals the null space of M'. Moreover, all such matrices are in the same similarity class (see Hoffman link).

Examples

			a(1) = 3 because there are 3 matrices of size 2 X 2 over GF(2) with the desired property: {{0, 0}, {1, 0}}, {{0, 1}, {0, 0}}, {{1, 1}, {1, 1}}.
		

Crossrefs

Programs

  • Mathematica
    q = 2; b[p_, i_] := Count[p, i]; d[p_, i_] := Sum[j b[p, j], {j, 1, i}] + i Sum[b[p, j], {j, i + 1, Total[p]}]; aut[deg_, p_] := Product[Product[q^(d[p, i] deg) - q^((d[p, i] - k) deg), {k, 1, b[p, i]}], {i, 1,Total[p]}]; Table[Product[2^(2 k) - 2^i, {i, 0, (2 k) - 1}]/aut[1, Table[2, {k}]], {k,0, 10}]

Formula

a(n) = A002884(n)*A006098(n).
Showing 1-3 of 3 results.