A006105 Gaussian binomial coefficient [ n,2 ] for q=4.
1, 21, 357, 5797, 93093, 1490853, 23859109, 381767589, 6108368805, 97734250405, 1563749404581, 25019996065701, 400319959420837, 6405119440211877, 102481911401303973
Offset: 2
Keywords
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..200
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (21,-84,64)
Programs
-
Maple
A006105:=-1/(z-1)/(4*z-1)/(16*z-1); # Simon Plouffe in his 1992 dissertation, assuming offset zero
-
Mathematica
faq[n_, q_] = Product[(1-q^(1+k))/(1-q), {k, 0, n-1}]; qbin[n_, m_, q_] = faq[n, q]/(faq[m, q]*faq[n-m, q]); Table[qbin[n, 2, 4], {n, 2, 16}] (* Jean-François Alcover, Jul 21 2011 *) CoefficientList[Series[1 / ((1 - x) (1 - 4 x) (1 - 16 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 23 2013 *) LinearRecurrence[{21,-84,64},{1,21,357},20] (* Harvey P. Dale, Feb 17 2020 *)
-
Sage
[gaussian_binomial(n,2,4) for n in range(2,17)] # Zerinvary Lajos, May 28 2009
Formula
G.f.: x^2/((1-x)*(1-4*x)*(1-16*x)). [Multiplied by x^2 to match offset by R. J. Mathar, Mar 11 2009]
a(n) = (16^n - 5*4^n + 4)/180. - Mitch Harris, Mar 23 2008
a(n) = 5*a(n-1) -4*a(n-2) +16^(n-2), n>=4. - Vincenzo Librandi, Mar 20 2011