A022168
Triangle of Gaussian binomial coefficients [ n,k ] for q = 4.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 21, 1, 1, 85, 357, 85, 1, 1, 341, 5797, 5797, 341, 1, 1, 1365, 93093, 376805, 93093, 1365, 1, 1, 5461, 1490853, 24208613, 24208613, 1490853, 5461, 1, 1, 21845, 23859109, 1550842085, 6221613541
Offset: 0
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 21, 21, 1;
1, 85, 357, 85, 1;
1, 341, 5797, 5797, 341, 1;
1, 1365, 93093, 376805, 93093, 1365, 1;
1, 5461, 1490853, 24208613, 24208613, 1490853, 5461, 1;
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- T. D. Noe, Rows n=0..50 of triangle, flattened
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Index entries for sequences related to Gaussian binomial coefficients
-
A022168 := proc(n,m)
A027637(n)/A027637(n-m)/A027637(m) ;
end proc: # R. J. Mathar, Nov 14 2011
-
gaussianBinom[n_, k_, q_] := Product[q^i - 1, {i, n}]/Product[q^j - 1, {j, n - k}]/Product[q^l - 1, {l, k}]; Column[Table[gaussianBinom[n, k, 4], {n, 0, 8}, {k, 0, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
Table[QBinomial[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 4; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, May 27 2018 *)
-
{q=4; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
A166915
a(n) = 20*a(n-1) - 64*a(n-2) - 45 for n>1; a(0) = 399, a(1) = 5695.
Original entry on oeis.org
399, 5695, 88319, 1401855, 22384639, 357974015, 5726863359, 91626930175, 1466019348479, 23456263438335, 375300030463999, 6004799749226495, 96076793034833919, 1537228676746182655, 24595658780694282239
Offset: 0
-
LinearRecurrence[{21, -84, 64}, {399, 5695, 88319}, 50] (* G. C. Greubel, May 28 2016 *)
-
m=15; v=concat([399, 5695], vector(m-2)); for(n=3, m, v[n]=20*v[n-1]-64*v[n-2]-45); v
A166916
a(n) = 20*a(n-1) - 64*a(n-2) - 15 for n > 1; a(0) = 357, a(1) = 5525.
Original entry on oeis.org
357, 5525, 87637, 1399125, 22373717, 357930325, 5726688597, 91626231125, 1466016552277, 23456252253525, 375299985724757, 6004799570269525, 96076792319006037, 1537228673882871125, 24595658769241036117
Offset: 0
-
LinearRecurrence[{21,-84,64},{357,5525,87637},20] (* Harvey P. Dale, Sep 24 2012 *)
-
m=15; v=concat([357, 5525], vector(m-2)); for(n=3, m, v[n]=20*v[n-1]-64*v[n-2]-15); v
A166984
a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 1, a(1) = 20.
Original entry on oeis.org
1, 20, 336, 5440, 87296, 1397760, 22368256, 357908480, 5726601216, 91625881600, 1466015154176, 23456246661120, 375299963355136, 6004799480791040, 96076791961092096, 1537228672451215360, 24595658763514413056, 393530540233410478080, 6296488643803287126016
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..830 (terms 0..200 from Vincenzo Librandi)
- E. Saltürk and I. Siap, Generalized Gaussian Numbers Related to Linear Codes over Galois Rings, European Journal of Pure and Applied Mathematics, Vol. 5, No. 2, 2012, 250-259; ISSN 1307-5543. - From _N. J. A. Sloane_, Oct 23 2012
- Index entries for linear recurrences with constant coefficients, signature (20,-64).
-
[n le 2 select 19*n-18 else 20*Self(n-1)-64*Self(n-2): n in [1..17] ];
-
LinearRecurrence[{20,-64},{1,20},30] (* Harvey P. Dale, Jul 04 2012 *)
-
a(n) = (4*16^n - 4^n)/3 \\ Charles R Greathouse IV, Jun 21 2022
-
A166984=BinaryRecurrenceSequence(20,-64,1,20)
[A166984(n) for n in range(31)] # G. C. Greubel, Oct 02 2024
A166965
a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 1, a(1) = 19.
Original entry on oeis.org
1, 19, 316, 5104, 81856, 1310464, 20970496, 335540224, 5368692736, 85899280384, 1374389272576, 21990231506944, 351843716694016, 5629499517435904, 90071992480301056, 1441151880490123264, 23058430091063197696
Offset: 0
Cf.
A166927,
A006105 (Gaussian binomial coefficient [ n, 2 ] for q=4).
-
[ n le 2 select 18*n-17 else 20*Self(n-1)-64*Self(n-2): n in [1..17] ];
-
LinearRecurrence[{20,-64},{1,19},20] (* Harvey P. Dale, Aug 24 2014 *)
A167031
a(n) = 20*a(n-1) - 64*a(n-2) + 1 for n > 1; a(0) = 1, a(1) = 20.
Original entry on oeis.org
1, 20, 337, 5461, 87653, 1403557, 22461349, 359399333, 5750460325, 92007649189, 1472123522981, 23553980911525, 376863712759717, 6029819476856741, 96477111920512933, 1543633791891427237, 24698140674915717029
Offset: 0
-
[ n le 2 select 19*n-18 else 20*Self(n-1)-64*Self(n-2)+1: n in [1..17] ];
-
LinearRecurrence[{21, -84, 64}, {1, 20, 337}, 50] (* G. C. Greubel, May 30 2016 *)
A167032
a(n) = 20*a(n-1) - 64*a(n-2) + 2 for n > 1; a(0) = 1, a(1) = 21.
Original entry on oeis.org
1, 21, 358, 5818, 93450, 1496650, 23952202, 383258442, 6132227914, 98116017994, 1569857773386, 25117730316106, 401883708825418, 6430139436277578, 102882231360724810, 1646115703292731210, 26337851258768236362
Offset: 0
-
[ n le 2 select 20*n-19 else 20*Self(n-1)-64*Self(n-2)+2: n in [1..17] ];
-
A167032:=n->(257*16^n - 85*4^n + 8)/180: seq(A167032(n), n=0..25); # Wesley Ivan Hurt, May 30 2016
-
LinearRecurrence[{21, -84, 64}, {1,21,358}, 50] (* G. C. Greubel, May 30 2016 *)
RecurrenceTable[{a[0]==1,a[1]==21,a[n]==20a[n-1]-64a[n-2]+2},a,{n,20}] (* Harvey P. Dale, Oct 27 2019 *)
A167033
a(n) = 20*a(n-1) - 64*a(n-2) + 3 for n > 1; a(0) = 1, a(1) = 22.
Original entry on oeis.org
1, 22, 379, 6175, 99247, 1589743, 25443055, 407117551, 6513995503, 104224386799, 1667592023791, 26681479720687, 426903704891119, 6830459395698415, 109287350800936687, 1748597614694035183, 27977561842620755695
Offset: 0
-
[ n le 2 select 21*n-20 else 20*Self(n-1)-64*Self(n-2)+3: n in [1..17] ];
-
LinearRecurrence[{21, -84, 64}, {1, 22, 379}, 50] (* G. C. Greubel, May 30 2016 *)
A203244
Second elementary symmetric function of the first n terms of (1,4,16,64,256,...).
Original entry on oeis.org
4, 84, 1428, 23188, 372372, 5963412, 95436436, 1527070356, 24433475220, 390937001620, 6254997618324, 100079984262804, 1601279837683348, 25620477760847508, 409927645605215892, 6558842335410077332, 104941477389467729556
Offset: 2
-
f[k_] := 4^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[2, t[n]]
Table[a[n], {n, 2, 32}] (* A203244 *)
Table[a[n]/4, {n, 2, 32}] (* A006105 *)
LinearRecurrence[{21,-84,64},{4,84,1428},20] (* Harvey P. Dale, Aug 12 2015 *)
-
Vec(-4*x^2/((x-1)*(4*x-1)*(16*x-1)) + O(x^100)) \\ Colin Barker, Aug 15 2014
Showing 1-9 of 9 results.
Comments