A166914
a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 21, a(1) = 340.
Original entry on oeis.org
21, 340, 5456, 87360, 1398016, 22369280, 357912576, 5726617600, 91625947136, 1466015416320, 23456247709696, 375299967549440, 6004799497568256, 96076792028200960, 1537228672719650816, 24595658764588154880
Offset: 0
-
[Binomial(4^(n+3), 2)/96: n in [0..30]]; // G. C. Greubel, Oct 02 2024
-
CoefficientList[Series[(21-80x)/((1-4x)(1-16x)),{x,0,20}],x] (* or *) LinearRecurrence[{20,-64},{21,340},20] (* Harvey P. Dale, Feb 23 2011 & Mar 30 2012 *)
-
{m=15; v=concat([21, 340], vector(m-2)); for(n=3, m, v[n]=20*v[n-1]-64*v[n-2]); v}
-
A166914=BinaryRecurrenceSequence(20,-64,21,340)
[A166914(n) for n in range(31)] # G. C. Greubel, Oct 02 2024
A166917
a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 85, a(1) = 1364.
Original entry on oeis.org
85, 1364, 21840, 349504, 5592320, 89478144, 1431654400, 22906486784, 366503854080, 5864061927424, 93824991887360, 1501199874392064, 24019198007050240, 384307168179912704, 6148914691147038720, 98382635059426361344, 1574122160955116748800, 25185954575299047849984
Offset: 0
-
[Binomial(4^(n+4), 2)/384: n in [0..30]]; // G. C. Greubel, Oct 02 2024
-
LinearRecurrence[{20,-64}, {85, 1364}, 50] (* G. C. Greubel, May 28 2016 *)
-
{m=15; v=concat([85, 1364], vector(m-2)); for(n=3, m, v[n]=20*v[n-1]-64*v[n-2]); v}
-
A166917=BinaryRecurrenceSequence(20,-64,85,1364)
[A166917(n) for n in range(31)] # G. C. Greubel, Oct 02 2024
A166984
a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 1, a(1) = 20.
Original entry on oeis.org
1, 20, 336, 5440, 87296, 1397760, 22368256, 357908480, 5726601216, 91625881600, 1466015154176, 23456246661120, 375299963355136, 6004799480791040, 96076791961092096, 1537228672451215360, 24595658763514413056, 393530540233410478080, 6296488643803287126016
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..830 (terms 0..200 from Vincenzo Librandi)
- E. Saltürk and I. Siap, Generalized Gaussian Numbers Related to Linear Codes over Galois Rings, European Journal of Pure and Applied Mathematics, Vol. 5, No. 2, 2012, 250-259; ISSN 1307-5543. - From _N. J. A. Sloane_, Oct 23 2012
- Index entries for linear recurrences with constant coefficients, signature (20,-64).
-
[n le 2 select 19*n-18 else 20*Self(n-1)-64*Self(n-2): n in [1..17] ];
-
LinearRecurrence[{20,-64},{1,20},30] (* Harvey P. Dale, Jul 04 2012 *)
-
a(n) = (4*16^n - 4^n)/3 \\ Charles R Greathouse IV, Jun 21 2022
-
A166984=BinaryRecurrenceSequence(20,-64,1,20)
[A166984(n) for n in range(31)] # G. C. Greubel, Oct 02 2024
A232535
Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(n,k) = (binomial(2*n,2*k) + binomial(2*n+1,2*k))/2.
Original entry on oeis.org
1, 1, 2, 1, 8, 3, 1, 18, 25, 4, 1, 32, 98, 56, 5, 1, 50, 270, 336, 105, 6, 1, 72, 605, 1320, 891, 176, 7, 1, 98, 1183, 4004, 4719, 2002, 273, 8, 1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9, 1, 162, 3468, 22848, 59670, 68068, 34476, 7344, 561, 10, 1, 200, 5415
Offset: 0
Triangle begins:
1
1, 2
1, 8, 3
1, 18, 25, 4
1, 32, 98, 56, 5
1, 50, 270, 336, 105, 6
1, 72, 605, 1320, 891, 176, 7
1, 98, 1183, 4004, 4719, 2002, 273, 8
1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9
-
T := (n,k) -> binomial(2*n, 2*k)*(2*n+1-k)/(2*n+1-2*k);
seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Nov 26 2013
-
Flatten[Table[(Binomial[2n,2k]+Binomial[2n+1,2k])/2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 05 2015 *)
Showing 1-4 of 4 results.
Comments