A022168
Triangle of Gaussian binomial coefficients [ n,k ] for q = 4.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 21, 1, 1, 85, 357, 85, 1, 1, 341, 5797, 5797, 341, 1, 1, 1365, 93093, 376805, 93093, 1365, 1, 1, 5461, 1490853, 24208613, 24208613, 1490853, 5461, 1, 1, 21845, 23859109, 1550842085, 6221613541
Offset: 0
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 21, 21, 1;
1, 85, 357, 85, 1;
1, 341, 5797, 5797, 341, 1;
1, 1365, 93093, 376805, 93093, 1365, 1;
1, 5461, 1490853, 24208613, 24208613, 1490853, 5461, 1;
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- T. D. Noe, Rows n=0..50 of triangle, flattened
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Index entries for sequences related to Gaussian binomial coefficients
-
A022168 := proc(n,m)
A027637(n)/A027637(n-m)/A027637(m) ;
end proc: # R. J. Mathar, Nov 14 2011
-
gaussianBinom[n_, k_, q_] := Product[q^i - 1, {i, n}]/Product[q^j - 1, {j, n - k}]/Product[q^l - 1, {l, k}]; Column[Table[gaussianBinom[n, k, 4], {n, 0, 8}, {k, 0, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
Table[QBinomial[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 4; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, May 27 2018 *)
-
{q=4; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
A015195
Sum of Gaussian binomial coefficients for q=9.
Original entry on oeis.org
1, 2, 12, 184, 9104, 1225248, 540023488, 652225844096, 2584219514040576, 28081351726592246272, 1001235747932175990213632, 97915621602690773814148184064, 31420034518763282871588038742544384, 27654326463468067495668136467306727743488
Offset: 0
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
Total/@Table[QBinomial[n, m, 9], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 01 2012 *)
Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(9^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
A015196
Sum of Gaussian binomial coefficients for q=10.
Original entry on oeis.org
1, 2, 13, 224, 13435, 2266646, 1348019857, 2269339773068, 13484735901526279, 226960944509263279490, 13485189809930561625032701, 2269636415245291711513986785912, 1348523520252401463276762566348539123
Offset: 0
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
Total/@Table[QBinomial[n, m, 10], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 01 2012 *)
Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(10^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
A228465
Recurrence a(n) = a(n-1) + 2^n*a(n-2) with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 1, 9, 25, 313, 1913, 41977, 531705, 22023929, 566489849, 45671496441, 2366013917945, 376506912762617, 39141278944373497, 12376519796349807353, 2577539376694811306745, 1624792742123856760679161, 677311275106408471956040441, 852536648457739021814912002809
Offset: 0
-
[n le 2 select (n-1) else Self(n-1)+Self(n-2)*2^(n-1): n in [1..20]]; // Vincenzo Librandi, Aug 23 2013
-
RecurrenceTable[{a[n]==a[n-1]+2^n*a[n-2],a[0]==0,a[1]==1},a,{n,0,20}]
(* Alternative: *)
a[n_] := Sum[2^(k^2-1) QBinomial[n - k , k - 1, 2], {k, 1, n}];
Table[a[n], {n, 0, 19}] (* After Vladimir Kruchinin. Peter Luschny, Jan 20 2020 *)
-
def a(n):
return sum(2^(k^2 - 1)*q_binomial(n-k , k-1, 2) for k in (1..n))
print([a(n) for n in range(20)]) # Peter Luschny, Jan 20 2020
A015197
Sum of Gaussian binomial coefficients for q=11.
Original entry on oeis.org
1, 2, 14, 268, 19156, 3961832, 3092997464, 7024809092848, 60287817008722576, 1505950784990730735392, 142158530752430089391520224, 39060769254069395008311334483648, 40559566021977397260316290099710383936
Offset: 0
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
-
Total/@Table[QBinomial[n, m, 11], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 02 2012 *)
Flatten[{1,RecurrenceTable[{a[n]==2*a[n-1]+(11^(n-1)-1)*a[n-2],a[0]==1,a[1]==2},a,{n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
A174528
Triangle T(n,m) = 2*A022168(n,m) - binomial(n, m), 0 <= m <= n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 166, 708, 166, 1, 1, 677, 11584, 11584, 677, 1, 1, 2724, 186171, 753590, 186171, 2724, 1, 1, 10915, 2981685, 48417191, 48417191, 2981685, 10915, 1, 1, 43682, 47718190, 3101684114, 12443227012, 3101684114, 47718190
Offset: 0
Triangle begins
1;
1, 1;
1, 8, 1;
1, 39, 39, 1;
1, 166, 708, 166, 1;
1, 677, 11584, 11584, 677, 1;
1, 2724, 186171, 753590, 186171, 2724, 1;
1, 10915, 2981685, 48417191, 48417191, 2981685, 10915, 1;
1, 43682, 47718190, 3101684114, 12443227012, 3101684114, 47718190, 43682, 1;
-
A174528 := proc(n,k)
2*A022168(n,k)-binomial(n,k) ;
end proc:
seq(seq(A174528(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Nov 14 2011
-
c[n_, q_] = Product[1 - q^i, {i, 1, n}];
t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m];
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
(* alternate program *)
(* First run the program for A022168 to define gaussianBinom *)
Column[Table[2gaussianBinom[n, k, 4] - Binomial[n, k], {n, 0, 8}, {k, 0, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
A348103
a(n) is the number of vector subspaces in (F_4)^n, counted up to coordinate permutation.
Original entry on oeis.org
1, 2, 5, 16, 57, 262, 1746, 18304, 340435, 11805530, 779700089, 96708911116, 22633062447491, 9857264291668086
Offset: 0
Showing 1-7 of 7 results.
Comments