cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006129 a(0), a(1), a(2), ... satisfy Sum_{k=0..n} a(k)*binomial(n,k) = 2^binomial(n,2), for n >= 0.

Original entry on oeis.org

1, 0, 1, 4, 41, 768, 27449, 1887284, 252522481, 66376424160, 34509011894545, 35645504882731588, 73356937912127722841, 301275024444053951967648, 2471655539737552842139838345, 40527712706903544101000417059892, 1328579255614092968399503598175745633
Offset: 0

Views

Author

Keywords

Comments

Also labeled graphs on n unisolated nodes (inverse binomial transform of A006125). - Vladeta Jovovic, Apr 09 2000
Also the number of edge covers of the complete graph K_n. - Eric W. Weisstein, Mar 30 2017

Examples

			2^binomial(n,2) = 1 + binomial(n,2) + 4*binomial(n,3) + 41*binomial(n,4) + 768*binomial(n,5) + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A054548.
Cf. A322661 (if loops allowed), A086193 (directed edges), A002494 (unlabeled).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          2^binomial(n, 2) - add(a(k)*binomial(n,k), k=0..n-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 26 2012
  • Mathematica
    a = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, 20}]; Range[0, 20]! CoefficientList[Series[a/Exp[x], {x, 0, 20}], x] (* Geoffrey Critzer, Oct 21 2011 *)
    Table[Sum[(-1)^(n - k) Binomial[n, k] 2^Binomial[k, 2], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2015 *)
  • PARI
    for(n=0,25, print1(sum(k=0,n,(-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)), ", ")) \\ G. C. Greubel, Mar 30 2017
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def a(n): return 1 if n==0 else 2**binomial(n, 2) - sum(a(k)*binomial(n, k) for k in range(n))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 12 2017

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2).
E.g.f.: A(x)/exp(x) where A(x) = Sum_{n>=0} 2^C(n,2) x^n/n!. - Geoffrey Critzer, Oct 21 2011
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, May 04 2015

Extensions

More terms from Vladeta Jovovic, Apr 09 2000