cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006235 Complexity of doubled cycle (regarding case n = 2 as a multigraph).

Original entry on oeis.org

1, 12, 75, 384, 1805, 8100, 35287, 150528, 632025, 2620860, 10759331, 43804800, 177105253, 711809364, 2846259375, 11330543616, 44929049777, 177540878700, 699402223099, 2747583822720, 10766828545725, 42095796462852, 164244726238343, 639620518118400, 2486558615814025
Offset: 1

Views

Author

Keywords

Comments

In plain English, a(n) is the number of spanning trees of the n-prism graph Y_n. - Eric W. Weisstein, Jul 15 2011
Also the number of spanning trees of the n-web graph. - Eric W. Weisstein, Jul 15 2011
Also the number of spanning trees of the n-dipyramidal graph. - Eric W. Weisstein, Jun 14 2018
Determinants of the spiral knots S(4,k,(1,-1,1)). a(k) = det(S(4,k,(1,-1,1))). These knots are also the weaving knots W(k,4) and the Turk's Head Links THK(4,k). - Ryan Stees, Dec 14 2014

Examples

			For k=3, b(3)=sqrt(6)b(2)-b(1)=6-1=5, so det(S(4,3,(1,-1,1)))=3*5^2=75.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006237. Apart from a(2) coincides with A072373. A row or column of A173958.

Programs

  • Maple
    A006235:=(1+2*z-10*z**2+2*z**3+z**4)/(z-1)**2/(z**2-4*z+1)**2; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{10, -35, 52, -35, 10, -1}, {0, 1, 12, 75, 384, 1805}, 20]
    Table[1/2 (-2 + (2 - Sqrt[3])^n + (2 + Sqrt[3])^n) n, {n, 0, 20}] // Expand
    Table[n (ChebyshevT[n, 2] - 1), {n, 20}] (* Eric W. Weisstein, Mar 30 2017 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n),n))

Formula

a(n) = (1/2)*n*(-2 + (2 - sqrt(3))^n + (2 + Sqrt(3))^n) (Kreweras). - Eric W. Weisstein, Jul 15 2011
G.f.: x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2.
a(n) = 10*a(n-1)-35*a(n-2)+52*a(n-3)-35*a(n-4)+10*a(n-5)-a(n-6), n>5.
a(n) = (n/2)*A129743(n). - Woong Kook and Seung Kyoon Shin (andrewk(AT)math.uri.edu), Jan 13 2009
a(k) = det(S(4,k,(1,-1,1))) = k*b(k)^2, where b(1)=1, b(2)=sqrt(6), b(k)=sqrt(6)*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2). - Ryan Stees, Dec 14 2014
a(n) = n*(A001075(n) - 1). - Eric W. Weisstein, Mar 30 2017
E.g.f.: exp(x)*x*(exp(x)*(2*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - 1). - Stefano Spezia, May 05 2024

Extensions

More terms from Michael Somos, Jul 19 2002
Minor edits by N. J. A. Sloane, May 27 2012