A173958
Number A(n,k) of spanning trees in C_k X P_n; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 3, 12, 1, 4, 75, 70, 1, 5, 384, 1728, 408, 1, 6, 1805, 31500, 39675, 2378, 1, 7, 8100, 508805, 2558976, 910803, 13860, 1, 8, 35287, 7741440, 140503005, 207746836, 20908800, 80782, 1, 9, 150528, 113742727, 7138643400, 38720000000, 16864848000, 479991603, 470832, 1
Offset: 1
Square array A(n,k) begins:
1, 2, 3, 4, 5, ...
1, 12, 75, 384, 1805, ...
1, 70, 1728, 31500, 508805, ...
1, 408, 39675, 2558976, 140503005, ...
1, 2378, 910803, 207746836, 38720000000, ...
- Alois P. Heinz, Antidiagonals n = 1..60, flattened
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 210. - From _N. J. A. Sloane_, May 27 2012
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Path Graph
- Wikipedia, Kirchhoff's theorem
Columns k=1-11 give:
A000012,
A001542,
A003690,
A003753,
A003733,
A158880,
A158898,
A210812,
A174001,
A210813,
A174089.
-
with(LinearAlgebra):
A:= proc(n, m) local M, i, j;
if m=1 then 1 else
M:= Matrix(n*m, shape=symmetric);
for i to n do
for j to m-1 do M[m*(i-1)+j, m*(i-1)+j+1]:=-1 od;
M[m*(i-1)+1, m*i]:= M[m*(i-1)+1, m*i]-1
od;
for i to n-1 do
for j to m do M[m*(i-1)+j, m*i+j]:=-1 od
od;
for i to n*m do
M[i,i]:= -add(M[i,j], j=1..n*m)
od;
Determinant(DeleteColumn(DeleteRow(M, 1), 1))
fi
end:
seq(seq(A(n, 1+d-n), n=1..d), d=1..9);
# Crude Maple program from N. J. A. Sloane, May 27 2012:
Digits:=200;
T:=(m,n)->round(Re(evalf(simplify(expand(
m*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1))))));
# Alternative program using the resultant:
for n from 1 to 10 do seq(k*resultant(simplify((2*(ChebyshevT(k,(x + 2)/2) - 1))/x), simplify(ChebyshevU(n-1,1 - x/2)), x), k = 1 .. 10) end do; # Peter Bala, May 01 2014
-
t[m_, n_] := m*Product[Product[4*Sin[h*Pi/m]^2 + 4*Sin[k*Pi/(2*n)]^2, {h, 1, m-1}], {k, 1, n-1}]; Table[t[m, n-m+1] // Round, {n, 1, 9}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013, after N. J. A. Sloane *)
A006237
Complexity of tensor sum of n graphs; or spanning trees on n-cube.
Original entry on oeis.org
1, 1, 4, 384, 42467328, 20776019874734407680, 1657509127047778993870601546036901052416000000, 153850844349814660487100539994381178281567942393055761257560677644718869248475136000000000000000000000
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.6.10.
- Alois P. Heinz, Table of n, a(n) for n = 0..10
- Aaron R. Bagheri, Classifying the Jacobian Groups of Adinkras, (2017), HMC Senior Theses.
- Frank Harary, John P. Hayes, and Horng-Jyh Wu, A survey of the theory of hypercube graphs, Comput. Math. Appl., 15(4) (1988), 277-289.
- D. E. Knuth, Letter to N. J. A. Sloane, Oct. 1994
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 210, Parag. 4.
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
- Index entries for sequences related to trees
-
Table[2^(2^n - 1 - n) Product[k^Binomial[n, k], {k, n}], {n, 0, 10}]
-
a(n)=2^(2^n-n-1)*prod(k=1,n,k^binomial(n,k))
Description expanded July 1995
A072373
Complexity of doubled cycle (regarding case n = 2 as a graph).
Original entry on oeis.org
1, 4, 75, 384, 1805, 8100, 35287, 150528, 632025, 2620860, 10759331, 43804800, 177105253, 711809364, 2846259375, 11330543616, 44929049777, 177540878700, 699402223099, 2747583822720, 10766828545725, 42095796462852, 164244726238343, 639620518118400, 2486558615814025
Offset: 1
- Stefano Spezia, Table of n, a(n) for n = 1..1700
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,52,-35,10,-1).
Apart from a(2) coincides with
A006235.
-
/* prism (or doubled cycle) graph with n vertices */ prism(n)=if(n%2,[;],matrix(n,n,i,j,i!=j && ((abs(i-j)==1 && (i+j)!=n+1) || (abs(i-j)==n/2-1 && (i+j)%n==n/2+1) || abs(i-j)==n/2)))
-
/* treenumber (or complexity) of a graph */ treenumber(m)=local(n); n=matdim(m); if(n,matdet(adj2laplace(m)+matone(n))/n^2)
-
/* convert adjacency matrix to laplacian matrix */ adj2laplace(m)=local(l,n); n=matdim(m); matdiagonal(m*vectorv(n,i,1))-m
-
/* matrix J of all ones */ matone(n)=matrix(n,n,i,j,1) /* dimension of a square matrix */ matdim(m)=matsize(m)[1]
-
a(n)=treenumber(prism(2*n))
-
a(n)=if(n<0,0,polcoeff(-8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n),n))
A175243
Array read by antidiagonals: total number of spanning trees R_n(m) of the complete prism K_m X C_n.
Original entry on oeis.org
1, 2, 1, 3, 12, 3, 4, 75, 294, 16, 5, 384, 11664, 16384, 125, 6, 1805, 367500, 5647152, 1640250, 1296, 7, 8100, 10609215, 1528823808, 6291456000, 259200000, 16807, 8, 35287, 292626432, 380008339280, 18911429680500, 13556617751088, 59549251454
Offset: 1
The array starts in row n=1 as:
1, 1, 3, 16, 125
2, 12, 294, 16384, 1640250
3, 75, 11664, 5647152, 6291456000
4, 384, 367500, 1528823808,
5, 1805, 10609215,
-
A175243 := proc(n,m) n*2^(m-1)/m*( orthopoly[T](n,1+m/2)-1)^(m-1) ; end proc:
for d from 2 to 10 do for m from 1 to d-1 do n := d-m ; printf("%d,",A175243(n,m)) ; end do: end do:
-
r[n_, m_] := n*2^(m-1)*(ChebyshevT[n, 1+m/2]-1)^(m-1)/m; Table[r[n-m, m], {n, 2, 9}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)
A340561
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n-1} Product_{b=1..k-1} (4*sin(a*Pi/n)^2 + 4*cos(b*Pi/k)^2) ).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 12, 16, 4, 1, 1, 29, 75, 45, 5, 1, 1, 70, 361, 384, 121, 6, 1, 1, 169, 1728, 3509, 1805, 320, 7, 1, 1, 408, 8281, 31500, 30976, 8100, 841, 8, 1, 1, 985, 39675, 284089, 508805, 261725, 35287, 2205, 9, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 12, 29, 70, ...
1, 3, 16, 75, 361, 1728, ...
1, 4, 45, 384, 3509, 31500, ...
1, 5, 121, 1805, 30976, 508805, ...
1, 6, 320, 8100, 261725, 7741440, ...
-
default(realprecision, 120);
{T(n, k) = round(sqrt(prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*cos(b*Pi/k)^2))))}
A180510
G.f.: (t^5 + 2*t^4 + t^3 + 2*t^2 + t) / (t^6 + t^5 - 2*t^4 - 5*t^3 - 2*t^2 + t + 1).
Original entry on oeis.org
0, 1, 1, 2, 7, 5, 20, 27, 49, 106, 155, 331, 560, 1013, 1917, 3310, 6223, 11117, 20140, 36899, 66185, 121014, 218791, 396703, 721280, 1305025, 2371433, 4298618, 7796439, 14150029, 25652500, 46550531, 84427441, 153141122, 277824947, 503893035, 914114320, 1658100757, 3007674389, 5455918726, 9896444495, 17951959061, 32563657260
Offset: 0
G.f. = x + x^2 + 2*x^3 + 7*x^4 + 5*x^5 + 20*x^6 + 27*x^7 + 49*x^8 + 106*x^9 + ... - _Michael Somos_, Dec 30 2022
- Found by Noam D. Elkies and described in an email from Elkies to R. K. Guy, Jan 18 2011
- Vincenzo Librandi, Table of n, a(n) for n = 0..300 (corrected by Ray Chandler, Jan 19 2019)
- E. L. Roettger, H. C. Williams, and R. K. Guy, Some extensions of the Lucas functions, Number Theory and Related Fields: In Memory of Alf van der Poorten, Series: Springer Proceedings in Mathematics & Statistics, Vol. 43, J. Borwein, I. Shparlinski, W. Zudilin (Eds.) 2013.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (-1,2,5,2,-1,-1).
-
CoefficientList[ Series[(x^5 + 2x^4 + x^3 + 2x^2 + x)/(x^6 + x^5 - 2x^4 - 5x^3 - 2x^2 + x + 1), {x, 0, 42}], x] (* Robert G. Wilson v, Jun 26 2011 *)
a[1] = 0; a[2] = 1; a[3] = 1; a[4] = 2; a[5] = 7; a[6] = 5; a[n_Integer] := a[n] = -a[n - 6] - a[n - 5] + 2 a[n - 4] + 5 a[n - 3] + 2 a[n - 2] - a[n - 1] (* Or *)
LinearRecurrence[{-1, 2, 5, 2, -1, -1}, {0, 1, 1, 2, 7, 5}, 43] (* Roger L. Bagula, Mar 16 2012 *)
a[ n_] := a[n] = Sign[n]*With[{m = Abs[n]}, If[ m<4, {0, 1, 1, 2}[[m+1]], -a[m-1] +2*a[m-2] +5*a[m-3] +2*a[m-4] -a[m-5] -a[m-6]]]; (* Michael Somos, Dec 30 2022 *)
-
makelist(coeff(taylor(x*(x^4+2*x^3+x^2+2*x+1)/(x^6+x^5-2*x^4-5*x^3-2*x^2+x+1), x, 0, n), x, n), n, 1, 42); /* Bruno Berselli, Jun 05 2011 */
-
Vec((x^5+2*x^4+x^3+2*x^2+x)/(x^6+x^5-2*x^4-5*x^3-2*x^2+x+1)+O(x^99)) \\ Charles R Greathouse IV, Jun 06 2011
-
{a(n) = sign(n)*polcoeff((x^5 + 2*x^4 + x^3 + 2*x^2 + x)/(x^6 + x^5 - 2*x^4 - 5*x^3 - 2*x^2 + x + 1) + x*O(x^abs(n)), abs(n))}; /* Michael Somos, Dec 30 2022 */
Showing 1-6 of 6 results.
Comments