cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A173958 Number A(n,k) of spanning trees in C_k X P_n; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 12, 1, 4, 75, 70, 1, 5, 384, 1728, 408, 1, 6, 1805, 31500, 39675, 2378, 1, 7, 8100, 508805, 2558976, 910803, 13860, 1, 8, 35287, 7741440, 140503005, 207746836, 20908800, 80782, 1, 9, 150528, 113742727, 7138643400, 38720000000, 16864848000, 479991603, 470832, 1
Offset: 1

Views

Author

Alois P. Heinz, Nov 26 2010

Keywords

Comments

Every row and every column of the array is a divisibility sequence, i.e., the terms satisfy the property that if n divides m then a(n) divides a(m) provided a(n) > 0. This follows from the representation of the elements of the array as a resultant. - Peter Bala, May 01 2014

Examples

			Square array A(n,k) begins:
  1,    2,      3,         4,           5,  ...
  1,   12,     75,       384,        1805,  ...
  1,   70,   1728,     31500,      508805,  ...
  1,  408,  39675,   2558976,   140503005,  ...
  1, 2378, 910803, 207746836, 38720000000,  ...
		

Crossrefs

Rows n=1-2 give: A000027, A006235.
Main diagonal gives A252767.
Cf. A156308.

Programs

  • Maple
    with(LinearAlgebra):
    A:= proc(n, m) local M, i, j;
         if m=1 then 1 else
          M:= Matrix(n*m, shape=symmetric);
          for i to n do
            for j to m-1 do M[m*(i-1)+j, m*(i-1)+j+1]:=-1 od;
            M[m*(i-1)+1, m*i]:= M[m*(i-1)+1, m*i]-1
          od;
          for i to n-1 do
            for j to m do M[m*(i-1)+j, m*i+j]:=-1 od
          od;
          for i to n*m do
            M[i,i]:= -add(M[i,j], j=1..n*m)
          od;
          Determinant(DeleteColumn(DeleteRow(M, 1), 1))
         fi
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..9);
    # Crude Maple program from N. J. A. Sloane, May 27 2012:
    Digits:=200;
    T:=(m,n)->round(Re(evalf(simplify(expand(
    m*mul(mul( 4*sin(h*Pi/m)^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1))))));
    # Alternative program using the resultant:
    for n from 1 to 10 do seq(k*resultant(simplify((2*(ChebyshevT(k,(x + 2)/2) - 1))/x), simplify(ChebyshevU(n-1,1 - x/2)), x), k = 1 .. 10) end do; # Peter Bala, May 01 2014
  • Mathematica
    t[m_, n_] := m*Product[Product[4*Sin[h*Pi/m]^2 + 4*Sin[k*Pi/(2*n)]^2, {h, 1, m-1}], {k, 1, n-1}]; Table[t[m, n-m+1] // Round, {n, 1, 9}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013, after N. J. A. Sloane *)

Formula

A(n,k) = m*Prod(Prod( 4*sin(h*Pi/m)^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1) [Kreweras]. - From N. J. A. Sloane, May 27 2012
Let T(n,x) and U(n,x) denote the Chebyshev polynomials of the first and second kind respectively. Let R(n,x) = 2*( T(n,(x + 2)/2) - 1 )/x (the row polynomials of A156308). Then the (n,k)-th element of the array equals k times the resultant (R(k,x), U(n-1,(2 - x)/2)). - Peter Bala, May 01 2014 [Corrected by Pontus von Brömssen, Apr 08 2025]

A006237 Complexity of tensor sum of n graphs; or spanning trees on n-cube.

Original entry on oeis.org

1, 1, 4, 384, 42467328, 20776019874734407680, 1657509127047778993870601546036901052416000000, 153850844349814660487100539994381178281567942393055761257560677644718869248475136000000000000000000000
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.6.10.

Crossrefs

Cf. A006235.

Programs

  • Mathematica
    Table[2^(2^n - 1 - n) Product[k^Binomial[n, k], {k, n}], {n, 0, 10}]
  • PARI
    a(n)=2^(2^n-n-1)*prod(k=1,n,k^binomial(n,k))

Formula

a(n) = 2^(2^n-1-n)*1^binomial(n, 1)*2^binomial(n, 2)*...*n^binomial(n, n).

Extensions

Description expanded July 1995

A072373 Complexity of doubled cycle (regarding case n = 2 as a graph).

Original entry on oeis.org

1, 4, 75, 384, 1805, 8100, 35287, 150528, 632025, 2620860, 10759331, 43804800, 177105253, 711809364, 2846259375, 11330543616, 44929049777, 177540878700, 699402223099, 2747583822720, 10766828545725, 42095796462852, 164244726238343, 639620518118400, 2486558615814025
Offset: 1

Views

Author

Michael Somos, Jul 19 2002

Keywords

Crossrefs

Apart from a(2) coincides with A006235.

Programs

  • PARI
    /* prism (or doubled cycle) graph with n vertices */ prism(n)=if(n%2,[;],matrix(n,n,i,j,i!=j && ((abs(i-j)==1 && (i+j)!=n+1) || (abs(i-j)==n/2-1 && (i+j)%n==n/2+1) || abs(i-j)==n/2)))
    
  • PARI
    /* treenumber (or complexity) of a graph */ treenumber(m)=local(n); n=matdim(m); if(n,matdet(adj2laplace(m)+matone(n))/n^2)
    
  • PARI
    /* convert adjacency matrix to laplacian matrix */ adj2laplace(m)=local(l,n); n=matdim(m); matdiagonal(m*vectorv(n,i,1))-m
    
  • PARI
    /* matrix J of all ones */ matone(n)=matrix(n,n,i,j,1) /* dimension of a square matrix */ matdim(m)=matsize(m)[1]
    
  • PARI
    a(n)=treenumber(prism(2*n))
    
  • PARI
    a(n)=if(n<0,0,polcoeff(-8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n),n))

Formula

G.f.: -8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2.
a(n) = 10*a(n-1)-35*a(n-2)+52*a(n-3)-35*a(n-4)+10*a(n-5)-a(n-6), n>8.

A175243 Array read by antidiagonals: total number of spanning trees R_n(m) of the complete prism K_m X C_n.

Original entry on oeis.org

1, 2, 1, 3, 12, 3, 4, 75, 294, 16, 5, 384, 11664, 16384, 125, 6, 1805, 367500, 5647152, 1640250, 1296, 7, 8100, 10609215, 1528823808, 6291456000, 259200000, 16807, 8, 35287, 292626432, 380008339280, 18911429680500, 13556617751088, 59549251454
Offset: 1

Views

Author

R. J. Mathar, Mar 13 2010

Keywords

Examples

			The array starts in row n=1 as:
  1,    1,        3,         16,        125
  2,   12,      294,      16384,    1640250
  3,   75,    11664,    5647152, 6291456000
  4,  384,   367500, 1528823808,
  5, 1805, 10609215,
		

Crossrefs

Cf. A006235 (column 2), A000272, A212798 (column 3).

Programs

  • Maple
    A175243 := proc(n,m) n*2^(m-1)/m*( orthopoly[T](n,1+m/2)-1)^(m-1) ; end proc:
    for d from 2 to 10 do for m from 1 to d-1 do n := d-m ; printf("%d,",A175243(n,m)) ; end do: end do:
  • Mathematica
    r[n_, m_] := n*2^(m-1)*(ChebyshevT[n, 1+m/2]-1)^(m-1)/m; Table[r[n-m, m], {n, 2, 9}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)

Formula

R_n(m) = n*2^(m-1)* (T(n,1+m/2)-1)^(m-1)/m, where T(n,x) are Chebyshev polynomials, A008310.
Each column of the array is a linear divisibility sequence. Conjecturally, the k-th column satisfies a linear recurrence of order 4*k - 2. - Peter Bala, May 04 2014

A340561 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = sqrt( Product_{a=1..n-1} Product_{b=1..k-1} (4*sin(a*Pi/n)^2 + 4*cos(b*Pi/k)^2) ).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 12, 16, 4, 1, 1, 29, 75, 45, 5, 1, 1, 70, 361, 384, 121, 6, 1, 1, 169, 1728, 3509, 1805, 320, 7, 1, 1, 408, 8281, 31500, 30976, 8100, 841, 8, 1, 1, 985, 39675, 284089, 508805, 261725, 35287, 2205, 9, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 11 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,      1,       1, ...
  1, 2,   5,   12,     29,      70, ...
  1, 3,  16,   75,    361,    1728, ...
  1, 4,  45,  384,   3509,   31500, ...
  1, 5, 121, 1805,  30976,  508805, ...
  1, 6, 320, 8100, 261725, 7741440, ...
		

Crossrefs

Columns 1..4 give A000012, A000027, A004146, A006235.
Rows 1..3 give A000012, A000129, A005386.
Main diagonal gives A340563.
T(n, 2*n) gives A252767.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(sqrt(prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*cos(b*Pi/k)^2))))}

A180510 G.f.: (t^5 + 2*t^4 + t^3 + 2*t^2 + t) / (t^6 + t^5 - 2*t^4 - 5*t^3 - 2*t^2 + t + 1).

Original entry on oeis.org

0, 1, 1, 2, 7, 5, 20, 27, 49, 106, 155, 331, 560, 1013, 1917, 3310, 6223, 11117, 20140, 36899, 66185, 121014, 218791, 396703, 721280, 1305025, 2371433, 4298618, 7796439, 14150029, 25652500, 46550531, 84427441, 153141122, 277824947, 503893035, 914114320, 1658100757, 3007674389, 5455918726, 9896444495, 17951959061, 32563657260
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2011

Keywords

Comments

An example of a sextic divisibility sequence whose characteristic polynomial has degree 6 and a 12-element dihedral Galois group. This example has a field and polynomial discriminant of 98000, which is one of the smallest possible.

Examples

			G.f. = x + x^2 + 2*x^3 + 7*x^4 + 5*x^5 + 20*x^6 + 27*x^7 + 49*x^8 + 106*x^9 + ... - _Michael Somos_, Dec 30 2022
		

References

  • Found by Noam D. Elkies and described in an email from Elkies to R. K. Guy, Jan 18 2011

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[(x^5 + 2x^4 + x^3 + 2x^2 + x)/(x^6 + x^5 - 2x^4 - 5x^3 - 2x^2 + x + 1), {x, 0, 42}], x] (* Robert G. Wilson v, Jun 26 2011 *)
    a[1] = 0; a[2] = 1; a[3] = 1; a[4] = 2; a[5] = 7; a[6] = 5; a[n_Integer] := a[n] = -a[n - 6] - a[n - 5] + 2 a[n - 4] + 5 a[n - 3] + 2 a[n - 2] - a[n - 1] (* Or *)
    LinearRecurrence[{-1, 2, 5, 2, -1, -1}, {0, 1, 1, 2, 7, 5}, 43] (* Roger L. Bagula, Mar 16 2012 *)
    a[ n_] := a[n] = Sign[n]*With[{m = Abs[n]}, If[ m<4, {0, 1, 1, 2}[[m+1]], -a[m-1] +2*a[m-2] +5*a[m-3] +2*a[m-4] -a[m-5] -a[m-6]]]; (* Michael Somos, Dec 30 2022 *)
  • Maxima
    makelist(coeff(taylor(x*(x^4+2*x^3+x^2+2*x+1)/(x^6+x^5-2*x^4-5*x^3-2*x^2+x+1), x, 0, n), x, n), n, 1, 42);  /* Bruno Berselli, Jun 05 2011 */
    
  • PARI
    Vec((x^5+2*x^4+x^3+2*x^2+x)/(x^6+x^5-2*x^4-5*x^3-2*x^2+x+1)+O(x^99)) \\ Charles R Greathouse IV, Jun 06 2011
    
  • PARI
    {a(n) = sign(n)*polcoeff((x^5 + 2*x^4 + x^3 + 2*x^2 + x)/(x^6 + x^5 - 2*x^4 - 5*x^3 - 2*x^2 + x + 1) + x*O(x^abs(n)), abs(n))}; /* Michael Somos, Dec 30 2022 */

Formula

a(n) = -a(-n) for all n in Z. - Michael Somos, Dec 30 2022
Showing 1-6 of 6 results.