cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006235 Complexity of doubled cycle (regarding case n = 2 as a multigraph).

Original entry on oeis.org

1, 12, 75, 384, 1805, 8100, 35287, 150528, 632025, 2620860, 10759331, 43804800, 177105253, 711809364, 2846259375, 11330543616, 44929049777, 177540878700, 699402223099, 2747583822720, 10766828545725, 42095796462852, 164244726238343, 639620518118400, 2486558615814025
Offset: 1

Views

Author

Keywords

Comments

In plain English, a(n) is the number of spanning trees of the n-prism graph Y_n. - Eric W. Weisstein, Jul 15 2011
Also the number of spanning trees of the n-web graph. - Eric W. Weisstein, Jul 15 2011
Also the number of spanning trees of the n-dipyramidal graph. - Eric W. Weisstein, Jun 14 2018
Determinants of the spiral knots S(4,k,(1,-1,1)). a(k) = det(S(4,k,(1,-1,1))). These knots are also the weaving knots W(k,4) and the Turk's Head Links THK(4,k). - Ryan Stees, Dec 14 2014

Examples

			For k=3, b(3)=sqrt(6)b(2)-b(1)=6-1=5, so det(S(4,3,(1,-1,1)))=3*5^2=75.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006237. Apart from a(2) coincides with A072373. A row or column of A173958.

Programs

  • Maple
    A006235:=(1+2*z-10*z**2+2*z**3+z**4)/(z-1)**2/(z**2-4*z+1)**2; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{10, -35, 52, -35, 10, -1}, {0, 1, 12, 75, 384, 1805}, 20]
    Table[1/2 (-2 + (2 - Sqrt[3])^n + (2 + Sqrt[3])^n) n, {n, 0, 20}] // Expand
    Table[n (ChebyshevT[n, 2] - 1), {n, 20}] (* Eric W. Weisstein, Mar 30 2017 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n),n))

Formula

a(n) = (1/2)*n*(-2 + (2 - sqrt(3))^n + (2 + Sqrt(3))^n) (Kreweras). - Eric W. Weisstein, Jul 15 2011
G.f.: x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2.
a(n) = 10*a(n-1)-35*a(n-2)+52*a(n-3)-35*a(n-4)+10*a(n-5)-a(n-6), n>5.
a(n) = (n/2)*A129743(n). - Woong Kook and Seung Kyoon Shin (andrewk(AT)math.uri.edu), Jan 13 2009
a(k) = det(S(4,k,(1,-1,1))) = k*b(k)^2, where b(1)=1, b(2)=sqrt(6), b(k)=sqrt(6)*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2). - Ryan Stees, Dec 14 2014
a(n) = n*(A001075(n) - 1). - Eric W. Weisstein, Mar 30 2017
E.g.f.: exp(x)*x*(exp(x)*(2*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - 1). - Stefano Spezia, May 05 2024

Extensions

More terms from Michael Somos, Jul 19 2002
Minor edits by N. J. A. Sloane, May 27 2012

A372705 Number of connected spanning subgraphs of the n-dimensional hypercube graph.

Original entry on oeis.org

1, 1, 5, 1083, 1239326145
Offset: 0

Views

Author

Pontus von Brömssen, May 11 2024

Keywords

Comments

a(n)/A061301(n) is the probability that the n-dimensional hypercube graph is still connected after each edge has been independently deleted with probability 1/2.

Crossrefs

A337083 Number of spanning trees of the 1-skeleton of the (n-1)-dimensional permutohedron.

Original entry on oeis.org

1, 1, 6, 101154816, 6187732257761496793412385090375984958331031826464768000000000
Offset: 1

Views

Author

Richard Stanley, Aug 14 2020

Keywords

Comments

We have the factorizations:
a(4) = 2^15 * 3^2 * 7^3.
a(5) = 2^59 * 3^15 * 5^9 * 7^5 * 11^6 * 23^5 * 29^4 * 41^4.
a(6) = 2^215 * 3^178 * 5^47 * 7^15 * 11^39 * 13^10 * 19^16 * 23^15 * 29^16 * 41^16 * 61^5 * 67^9 * 71^5 * 1931^16 * 3253^9.

Examples

			For n=3 the permutohedron is a hexagon, which has six spanning trees.
		

Crossrefs

Cf. A006237.

Programs

  • Python
    import sympy,itertools
    def A337083(n):
      p=tuple(itertools.permutations(range(n)))
      m=len(p)
      q={p[i]:i for i in range(m)}
      Q=sympy.diag(*[n-1]*m)
      for i in range(m):
        for k in range(n-1):
          Q[i,q[p[i][:k]+tuple(reversed(p[i][k:k+2]))+p[i][k+2:]]]=-1
      return Q[:m-1,:m-1].det() # Pontus von Brömssen, Jan 18 2021

Extensions

a(1) prepended by Pontus von Brömssen, Jan 19 2021

A338832 Number of spanning trees in the k_1 X ... X k_j grid graph, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 4, 1, 15, 1, 384, 192, 56, 1, 31500, 1, 209, 2415, 42467328, 1, 49766400, 1, 2558976, 30305, 780, 1, 3500658000000, 100352, 2911, 8193540096000, 207746836, 1, 76752081000, 1, 20776019874734407680, 380160, 10864, 4140081, 242716067758080000000, 1
Offset: 1

Views

Author

Pontus von Brömssen, Nov 11 2020

Keywords

Comments

a(n) > 1 precisely when n is composite.

Examples

			The partition (2, 2, 1) has Heinz number 18 and the 3 X 3 X 2 grid graph has a(18) = 49766400 spanning trees.
		

Crossrefs

2 X n grid: A001353(n) = a(2*prime(n-1))
3 X n grid: A006238(n) = a(3*prime(n-1))
4 X n grid: A003696(n) = a(5*prime(n-1))
5 X n grid: A003779(n) = a(7*prime(n-1))
6 X n grid: A139400(n) = a(11*prime(n-1))
7 X n grid: A334002(n) = a(13*prime(n-1))
8 X n grid: A334003(n) = a(17*prime(n-1))
9 X n grid: A334004(n) = a(19*prime(n-1))
10 X n grid: A334005(n) = a(23*prime(n-1))
n X n grid: A007341(n) = a(prime(n-1)^2)
m X n grid: A116469(m,n) = a(prime(m-1)*prime(n-1))
2 X 2 X n grid: A003753(n) = a(4*prime(n-1))
2 X n X n grid: A067518(n) = a(2*prime(n-1)^2)
n X n X n grid: A071763(n) = a(prime(n-1)^3)
2 X ... X 2 grid: A006237(n) = a(2^n)

Formula

a(n) = Product_{n_1=0..k_1-1, ..., n_j=0..k_j-1; not all n_i=0} Sum_{i=1..j} (2*(1 - cos(n_i*Pi/k_i))) / Product_{i=1..j} k_i, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.
Showing 1-4 of 4 results.