A154956
Pierce expansion of 2/Pi.
Original entry on oeis.org
1, 2, 3, 5, 10, 71, 868, 1788, 7455, 44266, 54626, 74153, 224166, 390471, 1489304, 3737961, 22277163, 37201631, 113275744, 165029426, 2642368758, 3362202939, 5191046363, 8438525012, 36226438506, 40174126779, 125336047846, 531802867080, 599020778171
Offset: 0
1 - 1/2(1 - 1/3(1 - 1/5(1 - 1/10(1 - 1/71)))) = 2/(355/113).
-
Digits := 300: Pierce := proc(x) local resid,a,i,an ; resid := x ; a := [] ; for i from 1 do an := floor(1./resid) ; a := [op(a),an] ; resid := evalf(1.-an*resid) ; if ilog10( mul(i,i=a)) > 0.7*Digits then break ; fi ; od: RETURN(a) ; end: a060294 := evalf(2/Pi) ; Pierce(a060294) ; # R. J. Mathar, Jan 21 2009
-
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2/Pi, 7!], 50] (* G. C. Greubel, Nov 13 2016 *)
-
A154956(N=99)={localprec(N); my(c=2/Pi, d=c+c/10^N, a=[1\c]); while(a[#a]==1\d&&c=1-c*a[#a], d=1-d*a[#a]; a=concat(a, 1\c)); a[^-1]} \\ The optional argument is the precision used, approx. equal to the total number of digits in the result. - M. F. Hasler, Jul 04 2016
A232327
A generalized Engel expansion of 1/Pi.
Original entry on oeis.org
3, 23, 27, 89, 137, 9190, 25731, 80457, 125859, 270815, 609977, 959612, 1034186, 1491489, 2975032, 264484387, 1092196976, 1194228023, 1424193547, 4523998315, 13583506006, 380693793416, 1097951708621, 1486580651232
Offset: 0
Comparison of the Engel, alternating Engel and generalized Engel series expansions for 1/Pi.
A014012: Engel series expansion
1/Pi = 1/4 + 1/(4*4) + 1/(4*4*11) + 1/(4*4*11*45) + 1/(4*4*11*45*70) + ...
A006283: Alternating Engel series expansion
1/Pi = 1/3 - 1/(3*22) + 1/(3*22*118) - 1/(3*22*118*383) + 1/(3*22*118*83*571) - ...
A232327: Generalized Engel series expansion of the first kind
1/Pi = 1/3 - 1/(3*23) - 1/(3*23*27) + 1/(3*23*27*89) + 1/(3*23*27*89*137) - - + + ....
A232328: Generalized Engel series expansion of the second kind
1/Pi = 1/4 + 1/(4*3) - 1/(4*3*6) - 1/(4*3*6*12) + 1/(4*3*6*12*51) + 1/(4*3*6*12*51*146) - - + + ...
-
#A232327
#Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1
map_iterate := proc(n,b,x) option remember;
if n = 0 then
x
else
-1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x))
end if
end proc:
#Define the terms of the expansion of x to the base b
a := n -> ceil(evalf(b/map_iterate(n,b,x))):
Digits := 500:
#Choose values for x and b
x := 1/Pi: b:= -1:
seq(abs(a(n)), n = 0..25);
A232328
A generalized Engel expansion of 1/Pi.
Original entry on oeis.org
4, 3, 6, 12, 51, 146, 280, 482, 687, 3825, 5646, 30904, 120121, 1344923, 2340376, 4456271, 194324055, 219784933, 976224357, 11584437417, 26402463827, 34635051144, 85031207055, 95014277980, 257962314442
Offset: 0
-
#A232328
#Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1
map_iterate := proc(n,b,x) option remember;
if n = 0 then
x
else
-1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x))
end if
end proc:
#Define the terms of the expansion of x to the base b
a := n -> ceil(evalf(b/map_iterate(n,b,x))):
Digits:= 500:
#Choose values for x and b
x := -1/Pi: b:= -1:
seq(abs(a(n)), n = 0..24);
A006284
Pierce expansion for Euler's constant.
Original entry on oeis.org
1, 2, 6, 13, 21, 24, 225, 615, 17450, 23228, 57774, 221361, 522377, 793040, 1706305, 8664354, 19037086, 51965160, 56870701, 124645388, 784244500, 792809072, 3675221276, 42108268014, 53633289500, 56827261536, 67080647365
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[EulerGamma, 7!], 25] (* G. C. Greubel, Nov 14 2016 *)
-
r=1/Euler;for(n=1,30,r=r/(r-floor(r));print1(floor(r),","))
A091831
Pierce expansion of 1/sqrt(2).
Original entry on oeis.org
1, 3, 8, 33, 35, 39201, 39203, 60245508192801, 60245508192803, 218662352649181293830957829984632156775201, 218662352649181293830957829984632156775203
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..14
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Théor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Vlado Keselj, Length of Finite Pierce Series: Theoretical Analysis and Numerical Computations .
- Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
- Pelegrí Viader, Lluís Bibiloni, Jaume Paradís, On a problem of Alfred Renyi, Economics Working Paper No. 340.
- Eric Weisstein's World of Mathematics, Pierce Expansion
-
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/2), 7!], 17] (* G. C. Greubel, Nov 13 2016 *)
-
r=sqrt(2);for(n=1,10,r=r/(r-floor(r));print1(floor(r),","))
A091832
Pierce expansion of 1/e^2.
Original entry on oeis.org
7, 18, 19, 136, 349, 357, 1354, 6996, 7135, 9531, 11558, 15996, 17432, 52118, 151048, 427802, 821834, 877819, 972918, 1046690, 1540789, 3653077, 8200738, 9628573, 164153335, 5607624822, 86457467082, 141885251873, 151882622551
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..501 [a(1)=7 inserted by Georg Fischer, Nov 20 2020]
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Théor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Vlado Keselj, Length of Finite Pierce Series: Theoretical Analysis and Numerical Computations .
- Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
- Pelegrí Viader, Lluís Bibiloni, and Jaume Paradís, On a problem of Alfred Renyi, Economics Working Paper No. 340.
-
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[1/E^2, 7!], 15] (* G. C. Greubel, Nov 14 2016 *)
-
default(realprecision, 100000); r=exp(2); for(n=1, 100, s=(r/(r-floor(r))); print1(floor(r), ", "); r=s) \\ Benoit Cloitre [amended by Georg Fischer, Nov 20 2020]
A091833
Pierce expansion of 1/zeta(2).
Original entry on oeis.org
1, 2, 4, 7, 22, 29, 51, 173, 210, 262, 417, 746, 12341, 207220, 498538, 1286415, 2351289, 3702952, 7664494, 54693034, 75971438, 269954954, 6674693008, 13449203581, 59799655308, 98912303039, 948887634688, 3557757020909, 5898230078743
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1001 [a(1)=1 inserted by Georg Fischer, Nov 20 2020]
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Théor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Vlado Keselj, Length of Finite Pierce Series: Theoretical Analysis and Numerical Computations .
- Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
- Pelegrí Viader, Lluís Bibiloni, Jaume Paradís, On a problem of Alfred Renyi, Economics Working Paper No. 340.
-
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[1/Zeta[2], 7!], 25] (* G. C. Greubel, Nov 14 2016 *)
-
default(realprecision, 100000); r=zeta(2); for(n=1, 100, s=(r/(r-floor(r))); print1(floor(r), ", "); r=s) \\ Benoit Cloitre [amended by Georg Fischer, Nov 20 2020]
A091846
Pierce expansion of log(2).
Original entry on oeis.org
1, 3, 12, 21, 51, 57, 73, 85, 96, 1388, 4117, 5268, 9842, 11850, 16192, 19667, 29713, 76283, 460550, 1333597, 1462506, 9400189, 13097390, 30254851, 190193800, 201892756, 431766247, 942050077, 6204785761, 16684400052, 23762490104
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..500
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Théor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- Vlado Keselj, Length of Finite Pierce Series: Theoretical Analysis and Numerical Computations .
- Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
- Pelegrí Viader, Lluís Bibiloni, Jaume Paradís, On a Problem of Alfred Renyi, Economics Working Paper No. 340.
- Eric Weisstein's World of Mathematics, Pierce Expansion
-
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Log[2], 7!], 25] (* G. C. Greubel, Nov 14 2016 *)
-
r=1/log(2);for(n=1,30,r=r/(r-floor(r));print1(floor(r),","))
A140076
Pierce expansion of the cube root of 1/2.
Original entry on oeis.org
1, 4, 5, 7, 8, 18, 384, 7958, 14304, 16623, 18610, 20685, 72923, 883177, 1516692, 2493788, 2504069, 22881179, 110219466, 2241255405, 34982468090, 64356019489, 110512265214, 1142808349967, 3550630472116, 5238523454726, 7129035664265
Offset: 1
a(1) is 1 because the floor of 2^(1/3) is 1.
a(2)=4 because 1/(1-2^(-1/3)) is 4.8473221...
-
$MaxExtraPrecision = 80; x[1] = 2^(-1/3); a[n_] := a[n] = Floor[1/x[n]]; x[n_] := x[n] = 1 - a[n-1]*x[n-1]; Table[a[n], {n, 1, 27}] (* Jean-François Alcover, Dec 12 2011 *)
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/3), 7!], 25] (* G. C. Greubel, Nov 14 2016 *)
Showing 1-9 of 9 results.
Comments