cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006358 Number of distributive lattices; also number of paths with n turns when light is reflected from 5 glass plates.

Original entry on oeis.org

1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, 358671, 1260143, 4427294, 15554592, 54648506, 191998646, 674555937, 2369942427, 8326406594, 29253473175, 102777312308, 361091343583, 1268635610806, 4457144547354
Offset: 0

Views

Author

Keywords

Comments

Let M denotes the 5 X 5 matrix = row by row (1,1,1,1,1)(1,1,1,1,0)(1,1,1,0,0)(1,1,0,0,0)(1,0,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n),u(n)) = M^n*A where A is the vector (1,1,1,1,1); then a(n)=y(n). - Benoit Cloitre, Apr 02 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Column T1.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A038201 (5-wave sequence).

Programs

  • Maple
    A=seq(a.j,j=0..4):grammar1:=[Q4,{ seq(Q.i=Union(Epsilon,seq(Prod(a.j,Q.j),j=4-i..4)),i=0..4), seq(a.j=Z,j=0..4) }, unlabeled]: seq(count(grammar1,size=j),j=0..23); # Zerinvary Lajos, Mar 09 2007
    A006358:=-(z-1)*(z**3-3*z-1)/(-1+3*z+3*z**2-4*z**3-z**4+z**5); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    m = Table[ If[j <= 6-i, 1, 0], {i, 1, 5}, {j, 1, 5}] ; a[n_] := MatrixPower[m, n].Table[1, {5}]; Table[ a[n], {n, 0, 23}][[All, 1]] (* Jean-François Alcover, Dec 08 2011, after Benoit Cloitre *)
    LinearRecurrence[{3,3,-4,-1,1},{1,5,15,55,190},30] (* Harvey P. Dale, Jun 16 2016 *)
  • PARI
    k=5; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
    
  • PARI
    {a(n)=local(p=5);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)}

Formula

a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5).
a(n) is asymptotic to z(5)*w(5)^n where w(5) = (1/2)/cos(5*Pi/11) and z(5) is the root 1 < x < 2 of P(5, X) = -1 + 55*X + 847*X^2 - 5324*X^3 - 14641*X^4 + 14641*X^5. - Benoit Cloitre, Oct 16 2002
G.f.: A(x) = (1 + 2*x - 3*x^2 - x^3 + x^4)/(1 - 3*x - 3*x^2 + 4*x^3 + x^4 - x^5). - Paul D. Hanna, Feb 06 2006

Extensions

Alternative description and formula from Jacques Haubrich (jhaubrich(AT)freeler.nl)
More terms from James Sellers, Dec 24 1999