A006472 a(n) = n!*(n-1)!/2^(n-1).
1, 1, 3, 18, 180, 2700, 56700, 1587600, 57153600, 2571912000, 141455160000, 9336040560000, 728211163680000, 66267215894880000, 6958057668962400000, 834966920275488000000, 113555501157466368000000, 17373991677092354304000000, 2970952576782792585984000000
Offset: 1
Examples
From _Gus Wiseman_, Jul 22 2018: (Start) The (3) = 3 maximal chains in the lattice of set partitions of {1,2,3}: {{1},{2},{3}} < {{1},{2,3}} < {{1,2,3}} {{1},{2},{3}} < {{2},{1,3}} < {{1,2,3}} {{1},{2},{3}} < {{3},{1,2}} < {{1,2,3}} (End)
References
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.
- László Lovász, Combinatorial Problems and Exercises, North-Holland, 1979, p. 165.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Mike Steel, Phylogeny: Discrete and Random Processes in Evolution, SIAM, 2016, p. 47.
Links
- T. D. Noe, Table of n, a(n) for n = 1..50
- E. H. Dickey, N. A. Rosenberg, Labelled histories with multifurcation and simultaneity, Phil. Trans. R. Soc. B 380 (2025), 20230307.
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
- Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
- Filippo Disanto and Thomas Wiehe, Some combinatorial problems on binary rooted trees occurring in population genetics, arXiv preprint arXiv:1112.1295 [math.CO], 2011-2012.
- A. W. F. Edwards, Estimation of the branch points of a branching diffusion Process, J. Royal Stat. Soc. Ser. B 32 (1970), 155-164.
- P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
- L. Ferretti, F. Disanto and T. Wiehe, The Effect of Single Recombination Events on Coalescent Tree Height and Shape, PLoS ONE 8(4): e60123.
- O. Frank and K. Svensson, On probability distributions of single-linkage dendrograms, Journal of Statistical Computation and Simulation, 12 (1981), 121-131. (Annotated scanned copy)
- Djamel Himane, A simple proof of Werner Schulte's conjecture, arXiv:2404.08646 [math.GM], 2024. See also Notes Num. Theor. Disc. Math., (2025) Vol. 31, No. 2, 251-225.
- M. E. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math. Soc., 355, 2003, 3795-3811.
- Shi-Mei Ma, Jun Ma, and Yeong-Nan Yeh, On certain combinatorial expansions of the Legendre-Stirling numbers, arXiv:1805.10998 [math.CO], 2018.
- C. L. Mallows, Note to N. J. A. Sloane circa 1979.
- F. Murtagh, Counting dendrograms: a survey, Discrete Applied Mathematics, 7 (1984), 191-199.
- N. A. Rosenberg, The mean and variance of the numbers of r-pronged nodes and r-caterpillars in Yule-generated genealogical trees, Annals of Combinatorics, 10 (2006), 129-146.
- Thomas Wiehe, Counting, grafting and evolving binary trees, arXiv:2010.06409 [q-bio.PE], 2020.
- Johannes Wirtz, On the enumeration of leaf-labelled increasing trees with arbitrary node-degree, arXiv:2211.03632 [q-bio.PE], 2022. See page 12.
- Index entries for sequences related to factorial numbers.
Crossrefs
Programs
-
Magma
[Factorial(n)*Factorial(n-1)/2^(n-1): n in [1..20]]; // Vincenzo Librandi, Aug 23 2018
-
Maple
A006472 := n -> n!*(n-1)!/2^(n-1):
-
Mathematica
FoldList[Times,1,Accumulate[Range[20]]] (* Harvey P. Dale, Jan 10 2013 *)
-
PARI
a(n) = n*(n-1)!^2/2^(n-1) \\ Charles R Greathouse IV, May 18 2015
-
Python
from math import factorial def A006472(n): return n*factorial(n-1)**2 >> n-1 # Chai Wah Wu, Jun 22 2022
Formula
a(n) = a(n-1)*A000217(n-1).
a(n) = A010790(n-1)/2^(n-1).
a(n) = polygorial(n, 3) = (A000142(n)/A000079(n))*A000142(n+1) = (n!/2^n)*Product_{i=0..n-1} (i+2) = (n!/2^n)*Pochhammer(2, n) = (n!^2/2^n)*(n+1) = polygorial(n, 4)/2^n*(n+1). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
a(n-1) = (-1)^(n+1)/(n^2*det(M_n)) where M_n is the matrix M_(i, j) = abs(1/i - 1/j). - Benoit Cloitre, Aug 21 2003
From Ilya Gutkovskiy, Dec 15 2016: (Start)
a(n) ~ 4*Pi*n^(2*n)/(2^n*exp(2*n)).
Sum_{n>=1} 1/a(n) = BesselI(1,2*sqrt(2))/sqrt(2) = 2.3948330992734... (End)
D-finite with recurrence 2*a(n) -n*(n-1)*a(n-1)=0. - R. J. Mathar, May 02 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = BesselJ(1,2*sqrt(2))/sqrt(2). - Amiram Eldar, Jun 25 2022
Comments