cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006528 a(n) = (n^4 + n^2 + 2*n)/4.

Original entry on oeis.org

0, 1, 6, 24, 70, 165, 336, 616, 1044, 1665, 2530, 3696, 5226, 7189, 9660, 12720, 16456, 20961, 26334, 32680, 40110, 48741, 58696, 70104, 83100, 97825, 114426, 133056, 153874, 177045, 202740, 231136, 262416, 296769, 334390, 375480, 420246, 468901, 521664, 578760
Offset: 0

Views

Author

Keywords

Comments

Number of ways to color vertices of a square using <= n colors, allowing only rotations.
Also product of first and last terms in n-th row of a triangle of form: row(1)= 1; row(2)= 2,3; row(3) = 4, 5, 6, ... . - Dave Durgin, Aug 17 2012

References

  • Nick Baxter, The Burnside di-lemma: combinatorics and puzzle symmetry, in Tribute to a Mathemagician, Peters, 2005, pp. 199-210.
  • M. Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=2 of A343095.
Cf. A002817 (square colorings).

Programs

  • Magma
    I:=[0, 1, 6, 24, 70]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 30 2012
    
  • Maple
    A006528:=-z*(1+z+4*z**2)/(z-1)**5; # Simon Plouffe in his 1992 dissertation
    a:=n->add(n+add(binomial(n,2), j=1..n),j=0..n):seq(a(n)/2, n=0..35); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    Table[CycleIndex[CyclicGroup[4],t]/.Table[t[i]->n,{i,1,4}],{n,0,20}] (* Geoffrey Critzer, Mar 13 2011*)
    Table[(n^4+n^2+2*n)/4,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,6,24,70},40] (* Harvey P. Dale, Jan 13 2019 *)
  • PARI
    a(n) = n*(n+1)*(n^2-n+2)/4; /* Joerg Arndt, Apr 30 2012 */

Formula

a(n) = n*(n+1)*(n^2-n+2)/4.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Apr 30 2012
From Stefano Spezia, Oct 11 2023: (Start)
O.g.f.: x*(1 + x + 4*x^2)/(1 - x)^5.
E.g.f.: exp(x)*x*(4 + 8*x + 6*x^2 + x^3)/4. (End)