A124160 Erroneous version of A006571.
1, -2, -3, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4
Offset: 1
Keywords
References
- Barry Cipra, What's Happening in the Mathematical Sciences, Vol. 5, Amer. Math. Soc., 2002; see p. 5.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
nn = 73; squareFree = Select[Range[8*nn], SquareFreeQ]; b[n_] := SeriesCoefficient[q (Product[(1 - q^k), {k, 11, n, 11}] Product[1 - q^k, {k, n}])^2, {q, 0, n}]; Table[b[squareFree[[n]]], {n, 1, nn}]
nn = 104; a[n_] := DivisorSum[n, MoebiusMu[#] # &]; f = (x^3 - x^2 - y^2 - y); w[n_] := SeriesCoefficient[q*(Product[(1 - q^k), {k, 11, n, 11}]*Product[1 - q^k, {k, n}])^2, {q, 0, n}]; A006571 = ParallelTable[w[n], {n, 1, nn}]; A366450 = ParallelTable[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0]*a[k]/n, {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]; Denominator[A006571/A366450]
a[ n_] := If[ n < 1, 0, With[ {m = Prime @ n}, SeriesCoefficient[ q (Product[ (1 - q^(11 k)), {k, Ceiling[m/11]}]Product[ 1 - q^k, {k, m}])^2, {q, 0, m}]]] (* Michael Somos, Jul 04 2011 *)
a(5)=4 from the 4 solutions (0,0), (0,4), (1,0), (1,4) mod 5. G.f. = x + 4*x^2 + 4*x^3 + 8*x^4 + 4*x^5 + 16*x^6 + 9*x^7 + 16*x^8 + 12*x^9 + ...
{a(n) = sum(x=0, n-1, sum(y=0, n-1, (y^2 + y - x^3 + x^2) % n == 0))}; /* Michael Somos, Mar 20 2010 */
{a(n) = local(E, A, p, e); if(n<1, 0, E = ellinit( [0, -1, 1, 0, 0], 1); A = factor(n); prod( k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; (p - ellap(E, p)) * p^(e-1) )))}; /* Michael Somos, Mar 20 2010 */
The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2 == x^3 - 4*x^2 + 16 (mod prime(n)) begin: n, prime(n), a(n)\ solutions (x, y) 1, 2, 2: (0, 0), (1, 1) 2, 3, 4: (0, 1), (0, 2), (1, 1), (1, 2) 3, 5, 4: (0, 1), (0, 4), (4, 1), (4, 4) 4, 7, 9: (0, 3), (0, 4), (2, 1), (2, 6), (4, 3), (4, 4), (6, 2), (6, 5) 5, 11, 10: (0, 4), (0, 7), (4, 4), (4, 7), (6, 0), (7, 3), (7, 8), (9, 5), (9, 6), (10, 0) ... --------------------------------------------------
G.f. = 1 - x - x^2 + x^5 + x^7 - x^11 + x^13 - x^15 - x^16 - x^18 + 2*x^23 + ... G.f. = q - q^3 - q^5 + q^11 + q^15 - q^23 + q^27 - q^31 - q^33 - q^37 + 2*q^47 +...
Basis( CuspForms( Gamma1(44), 1), 162) [1]; /* Michael Somos, Nov 13 2014 */
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^11], {x, 0, n}]; (* Michael Somos, Nov 12 2014 *)
{a(n) = if( n<0, 0, n = 2*n + 1; qfrep( [1, 0; 0, 11], n)[n] - qfrep( [3, 1; 1, 4], n)[n])}; /* Michael Somos, Nov 20 2006 */
{a(n) = my(A, p, e, f); if( n<0, 0, n = 2*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p==11, 1, f = sum( k=0, p-1, (k^3 - k^2 - k - 1)%p == 0); if( f==0, (e-1)%3-1, if( f==1, (1 + (-1)^e) / 2, e+1)))))}; /* Michael Somos, Nov 20 2006 */
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^11 + A), n))}; /* Michael Somos, Nov 20 2006 */
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 + ... G.f. = 1/q + 2 + 5*q + 10*q^2 + 20*q^3 + 36*q^4 + 65*q^5 + 110*q^6 + ...
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^11])^-2, {x, 0, n}]; (* Michael Somos, Apr 21 2015 *) nmax=60; CoefficientList[Series[Product[1/((1-x^k)^2 * (1-x^(11*k))^2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^11 + A))^-2, n))}; /* Michael Somos, Apr 21 2015 */
a[n_] := Mod[RamanujanTau[n], 11]; Array[a, 100] (* Amiram Eldar, Jan 05 2025 *)
a(n) = ramanujantau(n) % 11; \\ Amiram Eldar, Jan 05 2025
G.f. = q - 5*q^3 + 4*q^4 - q^5 + 16*q^9 - 11*q^11 - 20*q^12 + 5*q^15 + 16*q^16 + ...
A := Basis( CuspForms( Gamma1(11), 3), 73); A[1] - 5*A[3] + 4*A[4] - A[5]; /* Michael Somos, Mar 26 2015 */
a[ n_] := Module[ {A, B}, B = QPochhammer[ q] QPochhammer[ q^11]; A = B / (q QPochhammer[ q^3] QPochhammer[ q^33]); SeriesCoefficient[ q B^3 (1 + 3 / A) Sqrt[ q (A + 1 + 3 / A)], {q, 0, n}]]; (* Michael Somos, Mar 26 2015 *)
{a(n) = my(A, B); if( n<1, 0, n--; A = x * O(x^n); B = eta(x + A) * eta(x^11 + A); A = B /( x * eta(x^3 + A) * eta(x^33 + A)); A = B^3 * (1 + 3/A) * sqrt(x * (A + 1 + 3/A)); polcoeff(A, n))};
{a(n) = my(A, p, e, x, y, a0, a1); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==11, (-11)^e, kronecker( -11, p)==-1, if( e%2, 0, p^e), for( x=1, sqrtint(4*p\11), if( issquare(4*p - 11*x^2, &y), break)); y = y^2 - p*2; a0=1; a1=y; for( i=2, e, x = y*a1 - p^2*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Jun 06 2007 */
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); A = eta(x + A) * eta(x^11 + A); polcoeff( A^2 / subst(A + x * O(x^(n\2)), x, x^2) * (A^2 + 4*x * subst(A + x * O(x^(n\2)), x, x^2)^2 + 8 * x^3 * subst(A + x * O(x^(n\4)), x, x^4)^2), n))}; /* Michael Somos, Jun 06 2007 */
Comments