cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A366346 a(n) = A002070(n) + A036689(n).

Original entry on oeis.org

0, 5, 21, 40, 111, 160, 270, 342, 505, 812, 937, 1335, 1632, 1800, 2170, 2750, 3427, 3672, 4415, 4967, 5260, 6152, 6800, 7847, 9305, 10102, 10490, 11360, 11782, 12665, 16010, 17012, 18625, 19192, 22042, 22652, 24485, 26410, 27710, 29750, 31847, 32587, 36307
Offset: 1

Views

Author

Mats Granvik, Oct 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := If[n < 1, 0, With[{m = Prime@n}, SeriesCoefficient[q (Product[(1 - q^(11 k)), {k, Ceiling[m/11]}] Product[1 - q^k, {k, m}])^2, {q, 0, m}]]]; Table[Prime[n] (Prime[n] - 1) + b[n], {n, 1, 43}] (* after Michael Somos in A002070, Jul 04 2011 *)

Formula

a(n) = A002070(n) + A036689(n).
a(n) = Sum_{y=1..prime(n)} Sum_{x=1..prime(n)} [GCD(f(x,y), prime(n)) = 1],
a(n) = Sum_{y=1..prime(n)} Sum_{x=1..prime(n)} (1 - [MOD(f(x,y), prime(n)) = 0]) where f(x,y) = x^3 - x^2 - y^2 - y, in the last two formulas.
a(n) = A001248(n) - A272196(n), for n > 1.
a(n) = A366362(prime(n), 1).

A006571 Expansion of q*Product_{k>=1} (1-q^k)^2*(1-q^(11*k))^2.

Original entry on oeis.org

1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2, 2, -2, -1, 0, -4, -8, 5, -4, 0, 2, 7, 8, -1, 4, -2, -4, 3, 0, -4, 0, -8, -4, -6, 2, -2, 2, 8, 4, -3, 8, 2, 8, -6, -10, 1, 0, 0, 0, 5, -2, 12, -14, 4, -8, 4, 2, -7, -4, 1, 4, -3, 0, 4, -6, 4, 0, -2, 8, -10, -4, 1, 16, -6, 4, -2, 12, 0, 0, 15, 4, -8, -2, -7, -16, 0, -8, -7, 6, -2, -8
Offset: 1

Views

Author

Keywords

Comments

Number 23 of the 74 eta-quotients listed in Table I of Martin (1996).
Unique cusp form of weight 2 for congruence group Gamma_1(11). - Michael Somos, Aug 11 2011
For some elliptic curves with p-defects given by this sequence, and for more references, see A272196. See also the Michael Somos formula from May 23 2008 below. - Wolfdieter Lang, Apr 25 2016

Examples

			G.f.: q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 - 2*q^10 + q^11 + ...
		

References

  • Barry Cipra, What's Happening in the Mathematical Sciences, Vol. 5, Amer. Math. Soc., 2002; see p. 5.
  • M. du Sautoy, Review of "Love and Math: The Heart of Hidden Reality" by Edward Frenkel, Nature, 502 (Oct 03 2013), p. 36.
  • N. D. Elkies, Elliptic and modular curves..., in AMS/IP Studies in Advanced Math., 7 (1998), 21-76, esp. p. 42.
  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 412.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Wiles, Modular forms, elliptic curves and Fermat's last theorem, pp. 243-245 of Proc. Intern. Congr. Math. (Zurich), Vol. 1, 1994.

Crossrefs

Cf. A002070 (terms with prime indices), A032442, A030200.

Programs

  • Magma
    [ Coefficient(qEigenform(EllipticCurve([0, -1, 1, 0, 0]), n+1),n) : n in [1..100] ]; /* Klaus Brockhaus, Jan 29 2007 */
    
  • Magma
    [ Coefficient(Basis(ModularForms(Gamma0(11), 2))[2], n) : n in [1..100] ]; /* Klaus Brockhaus, Jan 31 2007 */
    
  • Magma
    Basis( CuspForms( Gamma1(11), 2), 101) [1]; /* Michael Somos, Jul 14 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^11])^2, {q, 0, n}]; (* Michael Somos, Aug 11 2011 *)
    a[ n_] := SeriesCoefficient[ q (Product[ (1 - q^k), {k, 11, n, 11}] Product[ 1 - q^k, {k, n}])^2, {q, 0, n}]; (* Michael Somos, May 27 2014 *)
  • PARI
    {a(n) = if( n<1, 0, ellak( ellinit( [0, -1, 1, 0, 0], 1), n))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^11 + A))^2, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==11, 1, a0=1; a1 = y = -sum(x=0, p-1, kronecker( 4*x^3 - 4*x^2 + 1, p)); for( i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 13 2006 */
    
  • Sage
    CuspForms( Gamma1(11), 2, prec = 101).0 # Michael Somos, Aug 11 2011
    

Formula

Expansion of (eta(q) * eta(q^11))^2 in powers of q.
a(n) == A000594(n) (mod 11). [Cowles]. - R. J. Mathar, Feb 13 2007
Euler transform of period 11 sequence [ -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -4, ...]. - Michael Somos, Feb 12 2006
a(n) is multiplicative with a(11^e) = 1, a(p^e) = a(p) * a(p^(e-1)) - p * a(p^(e-2)) for p != 11. - Michael Somos, Feb 12 2006
G.f. A(q) satisfies 0 = f(A(q), A(q^2), A(q^4)) where f(u, v, w) = u*w * (u + 4*v + 4*w) - v^3. - Michael Somos, Mar 21 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (11 t)) = 11 (t/i)^2 f(t) where q = exp(2 Pi i t).
Convolution square of A030200.
Coefficients of L-series for elliptic curve "11a3": y^2 + y = x^3 - x^2. - Michael Somos, May 23 2008
Convolution inverse is A032442. - Michael Somos, Apr 21 2015
a(prime(n)) = prime(n) - A272196(n), n >= 3.
a(2) = -2 is not 2 - A272196(1) = 0. Modularity pattern of some elliptic curves. - Wolfdieter Lang, Apr 25 2016

A090305 a(n) = 16*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 16.

Original entry on oeis.org

2, 16, 258, 4144, 66562, 1069136, 17172738, 275832944, 4430499842, 71163830416, 1143051786498, 18359992414384, 294902930416642, 4736806879080656, 76083812995707138, 1222077814810394864, 19629328849962024962
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.0622577... = 1/(8+sqrt(65)) = (sqrt(65)-8).
Lim_{n-> infinity} a(n+1)/a(n) = 16.0622577... = (8+sqrt(65)) = 1/(sqrt(65)-8).

Examples

			a(4) = 16*a(3) + a(2) = 16*4144 + 258 = (8+sqrt(65))^4 + (8-sqrt(65))^4 = 66561.99998497... + 0.00001502... = 66562.
		

Crossrefs

Lucas polynomials: A114525.
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), this sequence (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25), A087281 (m=29), A087287 (m=76), A089772 (m=199).

Programs

  • GAP
    m:=16;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 31 2019
  • Magma
    m:=16; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 31 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 8*I)), n = 0..20); # G. C. Greubel, Dec 31 2019
  • Mathematica
    LinearRecurrence[{16,1},{2,16},40] (* or *) With[{c=Sqrt[65]}, Simplify/@ Table[(c-8)((8+c)^n-(8-c)^n (129+16c)),{n,20}]] (* Harvey P. Dale, Oct 31 2011 *)
    LucasL[Range[20]-1, 16] (* G. C. Greubel, Dec 31 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 8*I) ) \\ G. C. Greubel, Dec 31 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 8*I) for n in (0..20)] # G. C. Greubel, Dec 31 2019
    

Formula

a(n) = 16*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 16.
a(n) = (8+sqrt(65))^n + (8-sqrt(65))^n.
a(n)^2 = a(2n) - 2 if n = 1, 3, 5, ...;
a(n)^2 = a(2n) + 2 if n = 2, 4, 6, ....
G.f.: (2-16*x)/(1-16*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 16) = 2*(-i)^n * ChebyshevT(n, 8*i). - G. C. Greubel, Dec 31 2019
E.g.f.: 2*exp(8*x)*cosh(sqrt(65)*x). - Stefano Spezia, Jan 01 2020

Extensions

More terms from Ray Chandler, Feb 14 2004

A272196 Number of solutions of the congruence y^2 == x^3 - 4*x^2 + 16 (mod p) as p runs through the primes.

Original entry on oeis.org

2, 4, 4, 9, 10, 9, 19, 19, 24, 29, 24, 34, 49, 49, 39, 59, 54, 49, 74, 74, 69, 89, 89, 74, 104, 99, 119, 89, 99, 104, 119, 149, 144, 129, 159, 149, 164, 159, 179, 179, 194, 174, 174, 189, 199, 199, 199, 204, 209, 214, 209, 269, 249, 274, 259, 249, 259, 299, 279, 299
Offset: 1

Views

Author

Wolfdieter Lang, Apr 22 2016

Keywords

Comments

This elliptic curve is discussed in the second Silverman reference. The present sequence is given in the rows named N_p in Table 45.6, p. 403. In the rows named a_p the p-defects prime(n) - a(n) are shown.
This sequence also gives the number of solutions of the congruences y^2 + y == x^3 - x^2 - 10*x - 20 (mod prime(n)) as well as y^2 + y == x^3 - x^2 (mod prime(n)) for n > 1 (cf. A376073). The first one is given in the Martin and Ono reference in Theorem 2, first row of the table, and the second one is given in the Frenkel reference, p. 84. (Of course, one could change the sign of y in both congruences.)
The modularity pattern for the elliptic curve y^2 = x^3 - 4*x^2 + 16 (and the ones mentioned in the previous comment and a comment below) is exhibited by the modular cusp form of weight 2 and level 11 (eta(z)*eta(11*z))^2, where eta is the Dedekind function, which in the q = exp(2*Pi*i*z), (Im(z) > 0) expansion has coefficients given in A006571 (with A006571(0) = 0). For all odd primes (2 is a bad prime), A002070(n) = A006571(prime(n)) = prime(n) - a(n), n >= 2, the p-defect. A006571(2) = -2, not 2-2 = 0. Note that the discriminant of this elliptic curve is -2^8*11 (sometimes -2^12*11 is used). Prime 11 is also bad for this curve, but A006571(11) = 1 = 11 - a(5) = 11 - 10. The curve y^2 + y = x^3 - x^2 - 10*x - 20 has discriminant -11^5 (see the first Silverman reference, pp. 46-48).
From Wolfdieter Lang, Jan 02 2017: (Start)
The congruence y^2 + y == x^3 - x^2 - 7820*x - 263580 (mod p) as p runs through the odd primes has the same number of solutions. See the Cremona link, N=11.
If b_n(Q) is the number of solutions of the Diophantine equation Q(x1,x2,x3,x4) = n with the quadratic form Q(x1,x2,x3,x4) = x1^2 + 4*(x2^2+x3^2+x4^2) + x1*x3 + 4*x2*x3 + 3*x2*x4 + 7*x3*x4 then the theta series delta(q;Q) = 1 + Sum_{n>=1} b_n(Q)*q^n equals (1/5)*E(q) + (18/5)*f(q) with the expansion coefficients of E(q) given by A185699 and those of f(q) = (eta(z)*eta(11*z))^2 with q = exp(2*Pi*i*z), (Im(z) > 0) given by A006571. See the Moreno-Wagstaff reference, pp. 245-246. b_n(Q), E(q) and f(q) are there denoted by a_n(Q), 12*E_{Chi0}(z) and f(z), respectively, and a missing n in the numerator of E_{Chi0}(z) has to be added (see A185699). (End)

Examples

			The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2  == x^3 - 4*x^2 + 16 (mod prime(n)) begin:
n, prime(n), a(n)\  solutions (x, y)
1,   2,       2:  (0, 0), (1, 1)
2,   3,       4:  (0, 1), (0, 2), (1, 1), (1, 2)
3,   5,       4:  (0, 1), (0, 4), (4, 1), (4, 4)
4,   7,       9:  (0, 3), (0, 4), (2, 1), (2, 6),
                  (4, 3), (4, 4), (6, 2), (6, 5)
5,  11,      10:  (0, 4), (0, 7), (4, 4), (4, 7),
                  (6, 0), (7, 3), (7, 8), (9, 5),
                  (9, 6), (10, 0)
...
--------------------------------------------------
		

References

  • Edward Frenkel, Liebe und Mathematik, Springer, Spektrum, 2014, p. 84.
  • Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall/CRC, Boca Raton, London, New York, pp. 246-247 (corrected).
  • J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986, pp. 46-48.
  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Table 45.6, p. 403, Theorem 47.2, p. 413 (4th ed., Pearson 2014, Table 6, p. 369, Theorem 2, p. 383)

Crossrefs

Formula

a(n) gives the number of solutions of the congruence y^2 == x^3 - 4*x^2 + 16 (mod prime(n)), n >= 1.

A366362 Triangle read by rows: T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^3 - x^2 - y^2 - y.

Original entry on oeis.org

1, 0, 4, 5, 0, 4, 0, 8, 0, 8, 21, 0, 0, 0, 4, 0, 20, 0, 0, 0, 16, 40, 0, 0, 0, 0, 0, 9, 0, 32, 0, 16, 0, 0, 0, 16, 45, 0, 24, 0, 0, 0, 0, 0, 12, 0, 84, 0, 0, 0, 0, 0, 0, 0, 16, 111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32
Offset: 1

Views

Author

Mats Granvik, Oct 08 2023

Keywords

Comments

Row n appears to have sum n^2. T(prime(m),1) = A366346(m). The number of nonzero terms in row n appears to be A320111(n).

Examples

			{
{1}, = 1^2
{0, 4}, = 2^2
{5, 0, 4}, = 3^2
{0, 8, 0, 8}, = 4^2
{21, 0, 0, 0, 4}, = 5^2
{0, 20, 0, 0, 0, 16}, = 6^2
{40, 0, 0, 0, 0, 0, 9}, = 7^2
{0, 32, 0, 16, 0, 0, 0, 16}, = 8^2
{45, 0, 24, 0, 0, 0, 0, 0, 12}, = 9^2
{0, 84, 0, 0, 0, 0, 0, 0, 0, 16}, = 10^2
{111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10}, = 11^2
{0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32} = 12^2
}
		

Crossrefs

Programs

  • Mathematica
    f = x^3 - x^2 - y^2 - y; nn = 12; Flatten[Table[Table[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]]

Formula

T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^3 - x^2 - y^2 - y.
Conjecture: T(n,n) = A060457(n).

A366450 a(n) = Sum_{k=1..n} A366362(n,k)*A023900(k)/n.

Original entry on oeis.org

1, -2, -1, -4, 1, 2, -2, -8, -3, -2, 1, 4, 4, 4, -1, -16, -2, 6, 0, -4, 2, -2, -1, 8, 5, -8, -9, 8, 0, 2, 7, -32, -1, 4, -2, 12, 3, 0, -4, -8, -8, -4, -6, -4, -3, 2, 8, 16, -14, -10, 2, -16, -6, 18, 1, 16, 0, 0, 5, 4, 12, -14, 6, -64, 4, 2, -7, 8, 1, 4, -3, 24, 4, -6, -5, 0, -2, 8, -10, -16, -27, 16, -6, -8
Offset: 1

Views

Author

Mats Granvik, Oct 10 2023

Keywords

Comments

It appears that: a(A005117(n)) = A006571(A005117(n)), verified up to n = 98. But also a(76) = A006571(76), a(116) = A006571(116) and a(152) = A006571(152). 76 = 19*2^2, 116 = 29*2^2 and 152 = 19*2^3.

Crossrefs

Programs

  • Mathematica
    nn = 84; f = x^3 - x^2 - y^2 - y; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Monitor[Table[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0]*g[k]/n, {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}], n]
  • PARI
    a(n) = sum(k=1, n, my(z=sumdivmult(k, d, d*moebius(d))); sum(y=1, n, sum(x=1, n, if (gcd(x^3 - x^2 - y^2 - y, n)==k, z/n)))); \\ Michel Marcus, Oct 10 2023

Formula

a(n) = Sum_{k=1..n} A366362(n,k)*A023900(k)/n.

A376073 Number of solutions of the congruence y^2 + y == x^3 - x^2 (mod p) as p runs through the primes.

Original entry on oeis.org

4, 4, 4, 9, 10, 9, 19, 19, 24, 29, 24, 34, 49, 49, 39, 59, 54, 49, 74, 74, 69, 89, 89, 74, 104, 99, 119, 89, 99, 104, 119, 149, 144, 129, 159, 149, 164, 159, 179, 179, 194, 174, 174, 189, 199, 199, 199, 204, 209, 214, 209, 269, 249, 274, 259, 249, 259, 299, 279, 299
Offset: 1

Views

Author

Andrey Zabolotskiy, Sep 08 2024

Keywords

Comments

Same as A272196, except for a(1).

References

  • Edward Frenkel, Love and math: the heart of hidden reality, Basic Books, 2013. See pages 86-89.

Crossrefs

Formula

a(n) = prime(n) - A002070(n).
a(n) = A060457(prime(n)).

A366417 a(n) = A006571(A005117(n)).

Original entry on oeis.org

1, -2, -1, 1, 2, -2, -2, 1, 4, 4, -1, -2, 0, 2, -2, -1, -8, 0, 2, 7, -1, 4, -2, 3, 0, -4, -8, -4, -6, 2, 8, 2, -6, 1, 0, 0, 5, 12, -14, 4, 2, -7, 1, 4, -3, 4, -6, -2, 8, -10, 16, -6, -2, 12, 0, 15, -8, -7, -16, 0, -7, 2, -4, -16, 2, 12, 18, 10, -2, -3, 9, 0, -1
Offset: 1

Views

Author

Mats Granvik, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 73; squareFree = Select[Range[8*nn], SquareFreeQ]; b[n_] := SeriesCoefficient[q (Product[(1 - q^k), {k, 11, n, 11}] Product[1 - q^k, {k, n}])^2, {q, 0, n}]; Table[b[squareFree[[n]]], {n, 1, nn}]

Formula

a(n) = A006571(A005117(n)).
Conjecture: a(n) = A366450(A005117(n)), verified up to n = 98.
Showing 1-8 of 8 results.