cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A022477 Number of 1's in n-th term of A006711.

Original entry on oeis.org

1, 2, 1, 3, 2, 6, 6, 6, 5, 12, 11, 16, 18, 30, 32, 48, 61, 85, 103, 148, 192, 247, 307, 427, 578, 754, 965, 1324, 1783, 2349, 3061, 4068, 5467, 7253, 9508, 12620, 16874, 22397, 29520, 39169, 52176, 69270, 91629, 121575, 161770, 214554, 284132, 377270
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

More terms from Sean A. Irvine, May 15 2019

A022478 Number of 2's in n-th term of A006711.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 4, 8, 6, 10, 9, 14, 16, 21, 28, 38, 45, 69, 86, 123, 157, 210, 280, 363, 480, 622, 818, 1104, 1453, 1940, 2567, 3421, 4534, 5996, 7992, 10590, 14005, 18596, 24707, 32784, 43361, 57566, 76449, 101457, 134506, 178495, 237051
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

More terms from Sean A. Irvine, May 15 2019

A022479 Number of 3's in n-th term of A006711.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 2, 1, 2, 3, 5, 6, 8, 13, 16, 21, 30, 38, 50, 63, 86, 115, 145, 193, 258, 355, 466, 609, 820, 1093, 1449, 1898, 2523, 3380, 4450, 5878, 7834, 10430, 13798, 18246, 24299, 32307, 42806, 56685, 75342, 100107, 132631
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

More terms from Sean A. Irvine, May 15 2019

A022476 Length of n-th term of A006711.

Original entry on oeis.org

1, 2, 2, 4, 4, 8, 10, 12, 14, 20, 24, 30, 38, 54, 66, 92, 120, 160, 210, 284, 378, 490, 632, 852, 1134, 1492, 1942, 2608, 3496, 4622, 6094, 8084, 10786, 14310, 18884, 25062, 33342, 44236, 58546, 77674, 103206, 136930, 181502, 240830, 319912, 424402, 562734, 746952, 991572, 1315400
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A006711.

Extensions

More terms from Sean A. Irvine, May 15 2019

A022480 Sum of digits in n-th term of A006711.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 16, 20, 24, 30, 40, 49, 64, 86, 113, 152, 200, 265, 355, 470, 627, 819, 1072, 1422, 1883, 2488, 3274, 4358, 5818, 7715, 10220, 13549, 18003, 23890, 31640, 41954, 55688, 73909, 98002, 129977, 172482, 228889, 303682, 402891, 534739, 709592, 941443, 1249265
Offset: 1

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, May 16 2019

A022482 Describe previous term from the right (method A - initial term is 2).

Original entry on oeis.org

2, 12, 1211, 211211, 21122112, 1221222112, 122132112211, 2122211213112211, 21222113111221321112, 123112131122311321321112, 123112131112132113222113111221131211
Offset: 1

Views

Author

Keywords

Comments

Method A = 'frequency' followed by 'digit'-indication.

Examples

			E.g. the term after 1211 is obtained by saying "two 1's, one 2, one 1", which gives 211211.
		

Crossrefs

Programs

Formula

a(n+1) = A045918(A004086(a(n))). - Reinhard Zumkeller, Mar 02 2014

A022506 Describe previous term from the right (method A - initial term is 0).

Original entry on oeis.org

0, 10, 1011, 211011, 21102112, 122112102112, 122112101112212211, 2122112231101112212211, 21221122311021132221221112, 12312211321321121021132221221112
Offset: 0

Views

Author

Keywords

Comments

Method A = 'frequency' followed by 'digit'-indication.

Examples

			The term after 1011 is obtained by saying "two 1's, one 0, one 1", which gives 211011.
		

Crossrefs

Programs

  • Haskell
    a022506 n = a022506_list !! n
    a022506_list = 0 : 10 : iterate (a045918 . a004086) 1011
    -- Reinhard Zumkeller, Mar 02 2014
  • Mathematica
    a[0] = 0;
    a[n_] := a[n] = Split[IntegerDigits[a[n-1]]] /. L_List /; IntegerQ[L[[1]]] :> {Length[L], L[[1]]} // Reverse // Flatten // FromDigits;
    a /@ Range[0, 9] (* Jean-François Alcover, Nov 26 2019 *)

Formula

For n > 1: a(n+1) = A045918(A004086(a(n))). - Reinhard Zumkeller, Mar 02 2014

Extensions

More terms from Erich Friedman

A022513 Describe previous term from the right (method A - initial term is 9).

Original entry on oeis.org

9, 19, 1911, 211911, 21192112, 122112192112, 122112191112212211, 2122112231191112212211, 21221122311921132221221112, 12312211321321121921132221221112
Offset: 0

Views

Author

Keywords

Comments

Method A = 'frequency' followed by 'digit'-indication.

Examples

			E.g., the term after 1911 is obtained by saying "two 1's, one 9, one 1", which gives 211911.
		

Crossrefs

Extensions

More terms from Erich Friedman

A022507 Describe previous term from the right (method A - initial term is 3).

Original entry on oeis.org

3, 13, 1311, 211311, 21132112, 122112132112, 122112131112212211, 2122112231131112212211, 21221122311321132221221112, 12312211321321121321132221221112
Offset: 0

Views

Author

Keywords

Comments

Method A = 'frequency' followed by 'digit'-indication.

Examples

			The term after 1311 is obtained by saying "two 1's, one 3, one 1", which gives 211311.
		

Crossrefs

Programs

Formula

a(n+1) = A045918(A004086(a(n))). - Reinhard Zumkeller, Mar 02 2014

Extensions

More terms from Erich Friedman

A138484 Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 0.

Original entry on oeis.org

0, 10, 1011, 3110, 102113, 13311210, 10411223, 1322311410, 1041142322, 3213243110, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422
Offset: 0

Views

Author

Keywords

Comments

After a while sequence has period 2 -> {1031331422,2214313310}

Examples

			To get the term after 102113, we say: one 3's, three 1's, one 2's, one 0's, so 13311210.
		

Crossrefs

Showing 1-10 of 25 results. Next