A006711
Describe previous term from the right (method A - initial term is 1).
Original entry on oeis.org
1, 11, 21, 1112, 1231, 11131211, 2112111331, 112331122112, 12212221231221, 11221113121132112211, 212221121321121113312221, 113211233112211213111221321112
Offset: 1
E.g. the term after 1231 is obtained by saying "one 1, one 3, one 2, one 1", which gives 11131211.
- J. H. Conway, personal communication.
- Akhlesh Lakhtakia and C. A. Pickover, Observations on the Gleichniszahlen-Reihe: An Unusual Number Theory Sequence, J. Rec. Math., Vol. 25 #3, pp. 189-192, 1993.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 1..24
- Onno M. Cain, Sela T. Enin, Inventory Loops (i.e. Counting Sequences) have Pre-period 2 max S_1 + 60, arXiv:2004.00209 [math.NT], 2020.
- Trevor Scheopner, The Cyclic Nature (and Other Intriguing Properties) of Descriptive Numbers, Princeton Undergraduate Mathematics Journal, Issue 1, Article 4.
- Eric Weisstein's World of Mathematics, Look and Say Sequence
- Wikipedia, Look-and-say sequence
A022482
Describe previous term from the right (method A - initial term is 2).
Original entry on oeis.org
2, 12, 1211, 211211, 21122112, 1221222112, 122132112211, 2122211213112211, 21222113111221321112, 123112131122311321321112, 123112131112132113222113111221131211
Offset: 1
E.g. the term after 1211 is obtained by saying "two 1's, one 2, one 1", which gives 211211.
A022506
Describe previous term from the right (method A - initial term is 0).
Original entry on oeis.org
0, 10, 1011, 211011, 21102112, 122112102112, 122112101112212211, 2122112231101112212211, 21221122311021132221221112, 12312211321321121021132221221112
Offset: 0
The term after 1011 is obtained by saying "two 1's, one 0, one 1", which gives 211011.
-
a022506 n = a022506_list !! n
a022506_list = 0 : 10 : iterate (a045918 . a004086) 1011
-- Reinhard Zumkeller, Mar 02 2014
-
a[0] = 0;
a[n_] := a[n] = Split[IntegerDigits[a[n-1]]] /. L_List /; IntegerQ[L[[1]]] :> {Length[L], L[[1]]} // Reverse // Flatten // FromDigits;
a /@ Range[0, 9] (* Jean-François Alcover, Nov 26 2019 *)
A022507
Describe previous term from the right (method A - initial term is 3).
Original entry on oeis.org
3, 13, 1311, 211311, 21132112, 122112132112, 122112131112212211, 2122112231131112212211, 21221122311321132221221112, 12312211321321121321132221221112
Offset: 0
The term after 1311 is obtained by saying "two 1's, one 3, one 1", which gives 211311.
A138484
Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 0.
Original entry on oeis.org
0, 10, 1011, 3110, 102113, 13311210, 10411223, 1322311410, 1041142322, 3213243110, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422
Offset: 0
To get the term after 102113, we say: one 3's, three 1's, one 2's, one 0's, so 13311210.
A138493
Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 9.
Original entry on oeis.org
9, 19, 1911, 3119, 192113, 13311219, 19411223, 1322311419, 1941142322, 3213243119, 1931331422, 2214313319, 1931331422, 2214313319, 1931331422, 2214313319, 1931331422, 2214313319, 1931331422, 2214313319, 1931331422
Offset: 0
To get the term after 192113, we say: one 3's, three 1's, one 2's, one 9's, so 13311219
A022508
Describe previous term from the right (method A - initial term is 4).
Original entry on oeis.org
4, 14, 1411, 211411, 21142112, 122112142112, 122112141112212211, 2122112231141112212211, 21221122311421132221221112, 12312211321321121421132221221112
Offset: 0
The term after 1411 is obtained by saying "two 1's, one 4, one 1", which gives 211411.
A022511
Describe previous term from the right (method A - initial term is 7).
Original entry on oeis.org
7, 17, 1711, 211711, 21172112, 122112172112, 122112171112212211, 2122112231171112212211, 21221122311721132221221112, 12312211321321121721132221221112
Offset: 0
The term after 1711 is obtained by saying "two 1's, one 7, one 1", which gives 211711.
-
NestList[FromDigits@ Flatten@ Map[Reverse@ Flatten@ Tally[#] &, Split@ Reverse@ IntegerDigits[#]] &, 7, 9] (* Michael De Vlieger, Dec 16 2021 *)
A022512
Describe previous term from the right (method A - initial term is 8).
Original entry on oeis.org
8, 18, 1811, 211811, 21182112, 122112182112, 122112181112212211, 2122112231181112212211, 21221122311821132221221112, 12312211321321121821132221221112
Offset: 0
E.g., the term after 1811 is obtained by saying "two 1's, one 8, one 1", which gives 211811.
-
split[n_]:=Split[Reverse[IntegerDigits[n]]];
list1[n_]:=List/@Length/@split[n];riffle1[n_]:=Riffle[split[n],list1[n]];
tab[n_]:=Table[i,{i,1,2*Length[list1[n]],2}];
list2[n_]:=Append[riffle1[n][[#]],riffle1[n][[#+1]]]&/@tab[n];
flat[n_]:=Flatten/@list2[n];riffle2[n_]:=Riffle[Last/@flat[n],First/@flat[n]];
a[1]=8; a[n_]:=FromDigits[riffle2[a[n-1]]]; Array[a,10] (* or *)
IntegerReverse[NestList[FromDigits[Flatten[Replace[Replace[Replace[Split[Reverse[IntegerDigits[#]]],{x_,y_}->{x,Length[{x,y}]},{1}],{x_,y_,z_}->{x,Length[{x,y,z}]},{1}],{x_}->{x,Length[{x}]},{1}]]]&,8,9]] (* Ivan N. Ianakiev, Nov 10 2016 *)
A138485
Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 1.
Original entry on oeis.org
1, 11, 21, 1112, 1231, 211312, 223113, 232122, 421113, 13311214, 14411223, 13223124, 14322123, 23322114, 14213223, 23322114, 14213223, 23322114, 14213223, 23322114, 14213223, 23322114, 14213223, 23322114, 14213223
Offset: 0
To get the term after 211312, we say: two 2's, three 1's, one 3's, so 223113.
Showing 1-10 of 19 results.
Comments