A006753 Smith (or joke) numbers: composite numbers k such that sum of digits of k = sum of digits of prime factors of k (counted with multiplicity).
4, 22, 27, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 378, 382, 391, 438, 454, 483, 517, 526, 535, 562, 576, 588, 627, 634, 636, 645, 648, 654, 663, 666, 690, 706, 728, 729, 762, 778, 825, 852, 861, 895, 913, 915, 922, 958, 985, 1086, 1111, 1165, 1219
Offset: 1
Examples
58 = 2*29; sum of digits of 58 is 13, sum of digits of 2 + sum of digits of 29 = 2+11 is also 13.
References
- M. Gardner, Penrose Tiles to Trapdoor Ciphers. Freeman, NY, 1989, p. 300.
- R. K. Guy, Unsolved Problems in the Theory of Numbers, Section B49.
- C. A. Pickover, "A Brief History of Smith Numbers" in "Wonders of Numbers: Adventures in Mathematics, Mind and Meaning", pp. 247-248, Oxford University Press, 2000.
- J. E. Roberts, Lure of the Integers, pp. 269-270 MAA 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. D. Spencer, Key Dates in Number Theory History, Camelot Pub. Co. FL, 1995, pp. 94.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.1.14 and 3.1.16 on pages 84-85.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 180.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- K. S. Brown's Mathpages, Smith Numbers and Rhonda Numbers
- C. K. Caldwell, The Prime Glossary, Smith number
- P. J. Costello, Smith Numbers
- M. Gardner, Letter to N. J. A. Sloane, Jun 20 1991.
- Ely Golden, General program for generating Smith number sequences
- S. S. Gupta, Smith Numbers
- T. Jason, Smith number
- Madras Math's Amazing Number Facts, Smith Numbers.
- Wayne L. McDaniel, The Existence of Infinitely Many k-Smith Numbers, The Fibonacci Quarterly, 25(1), 76-80, (1987).
- Sham Oltikar, and Keith Wayland, Construction of Smith Numbers, Mathematics Magazine, vol. 56(1), 1983, pp. 36-37.
- C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
- Carlos Rivera, Problem 107: Consecutive Smith numbers, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Problem 108: Methods for generating Smith numbers, The Prime Puzzles and Problems Connection.
- W. Schneider, Smith Numbers
- Eric Weisstein's World of Mathematics, Smith Number
- Wikipedia, Smith number
- A. Wilansky, Smith numbers, Two-Year Coll. Math. J., 13 (1982), p. 21.
- A. Witno, A Family of Sequences Generating Smith Numbers, J. Int. Seq. 16 (2013) #13.4.6
Crossrefs
Programs
-
Haskell
a006753 n = a006753_list !! (n-1) a006753_list = [x | x <- a002808_list, a007953 x == sum (map a007953 (a027746_row x))] -- Reinhard Zumkeller, Dec 19 2011
-
Maple
q:= n-> not isprime(n) and (s-> s(n)=add(s(i[1])*i[2], i= ifactors(n)[2]))(h-> add(i, i=convert(h, base, 10))): select(q, [$1..2000])[]; # Alois P. Heinz, Apr 22 2021
-
Mathematica
fQ[n_] := !PrimeQ@ n && n>1 && Plus @@ Flatten[ IntegerDigits@ Table[ #[[1]], {#[[2]] }] & /@ FactorInteger@ n] == Plus @@ IntegerDigits@ n; Select[ Range@ 1200, fQ]
-
PARI
isA006753(n) = if(isprime(n), 0, my(f=factor(n)); sum(i=1,#f[,1], sumdigits(f[i,1])*f[i,2]) == sumdigits(n)); \\ Charles R Greathouse IV, Jan 03 2012; updated by Max Alekseyev, Oct 21 2016
-
Python
from sympy import factorint def sd(n): return sum(map(int, str(n))) def ok(n): f = factorint(n) return sum(f[p] for p in f) > 1 and sd(n) == sum(sd(p)*f[p] for p in f) print(list(filter(ok, range(1220)))) # Michael S. Branicky, Apr 22 2021
-
Sage
is_A006753 = lambda n: n > 1 and not is_prime(n) and sum(n.digits()) == sum(sum(p.digits())*m for p,m in factor(n)) # D. S. McNeil, Dec 28 2010
Comments