cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A001207 Number of fixed hexagonal polyominoes with n cells.

Original entry on oeis.org

1, 3, 11, 44, 186, 814, 3652, 16689, 77359, 362671, 1716033, 8182213, 39267086, 189492795, 918837374, 4474080844, 21866153748, 107217298977, 527266673134, 2599804551168, 12849503756579, 63646233127758, 315876691291677, 1570540515980274, 7821755377244303, 39014584984477092, 194880246951838595, 974725768600891269, 4881251640514912341, 24472502362094874818, 122826412768568196148, 617080993446201431307, 3103152024451536273288, 15618892303340118758816, 78679501136505611375745
Offset: 1

Views

Author

Keywords

References

  • A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, p. 477. (Table 16.9 has 46 terms of this sequence.)
  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000228 (free), A006535 (one-sided).
Cf. A121220 (simply connected), A059716 (column convex).

Extensions

3 more terms and reference from Achim Flammenkamp, Feb 15 1999
More terms from Markus Voege (markus.voege(AT)inria.fr), Mar 25 2004

A366767 Array read by antidiagonals, where each row is the counting sequence of a certain type of fixed polyominoids.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 0, 2, 2, 0, 1, 0, 2, 4, 2, 0, 1, 0, 2, 12, 6, 1, 0, 1, 0, 2, 38, 22, 0, 1, 0, 1, 0, 2, 126, 88, 0, 2, 1, 0, 1, 0, 2, 432, 372, 0, 6, 2, 1, 0, 1, 0, 2, 1520, 1628, 0, 19, 6, 4, 3, 0, 1, 0, 2, 5450, 7312, 0, 63, 19, 20, 0, 3
Offset: 1

Views

Author

Pontus von Brömssen, Oct 22 2023

Keywords

Comments

See A366766 (corresponding array for free polyominoids) for details.

Examples

			Array begins:
  n\k| 1  2  3   4   5    6     7      8      9      10       11        12
  ---+--------------------------------------------------------------------
   1 | 1  0  0   0   0    0     0      0      0       0        0         0
   2 | 1  1  1   1   1    1     1      1      1       1        1         1
   3 | 2  0  0   0   0    0     0      0      0       0        0         0
   4 | 2  2  2   2   2    2     2      2      2       2        2         2
   5 | 2  4 12  38 126  432  1520   5450  19820   72892   270536   1011722
   6 | 2  6 22  88 372 1628  7312  33466 155446  730534  3466170  16576874
   7 | 1  0  0   0   0    0     0      0      0       0        0         0
   8 | 1  2  6  19  63  216   760   2725   9910   36446   135268    505861
   9 | 1  2  6  19  63  216   760   2725   9910   36446   135268    505861
  10 | 1  4 20 110 638 3832 23592 147941 940982 6053180 39299408 257105146
  11 | 3  0  0   0   0    0     0      0      0       0        0         0
  12 | 3  3  3   3   3    3     3      3      3       3        3         3
		

Crossrefs

Cf. A366766 (free), A366768.
The following table lists some sequences that are rows of the array, together with the corresponding values of D, d, and C (see A366766). Some sequences occur in more than one row. Notation used in the table:
X: Allowed connection.
-: Not allowed connection (but may occur "by accident" as long as it is not needed for connectedness).
.: Not applicable for (D,d) in this row.
!: d < D and all connections have h = 0, so these polyominoids live in d < D dimensions only.
*: Whether a connection of type (g,h) is allowed or not is independent of h.
| | | connections |
| | | g:112223 |
n | D | d | h:010120 | sequence
----+---+---+-------------+----------
1 | 1 | 1 | * -..... | A063524
2 | 1 | 1 | * X..... | A000012
3 |!2 | 1 | * --.... | 2*A063524
4 |!2 | 1 | X-.... | 2*A000012
5 | 2 | 1 | -X.... | 2*A001168
6 | 2 | 1 | * XX.... | A096267
7 | 2 | 2 | * -.-... | A063524
8 | 2 | 2 | * X.-... | A001168
9 | 2 | 2 | * -.X... | A001168
10 | 2 | 2 | * X.X... | A006770
11 |!3 | 1 | * --.... | 3*A063524
12 |!3 | 1 | X-.... | 3*A000012
13 | 3 | 1 | -X.... | A365655
14 | 3 | 1 | * XX.... | A365560
15 |!3 | 2 | * ----.. | 3*A063524
16 |!3 | 2 | X---.. | 3*A001168
17 | 3 | 2 | -X--.. | A365655
18 | 3 | 2 | * XX--.. | A075678
19 |!3 | 2 | --X-.. | 3*A001168
20 |!3 | 2 | X-X-.. | 3*A006770
21 | 3 | 2 | -XX-.. | A365996
22 | 3 | 2 | XXX-.. | A365998
23 | 3 | 2 | ---X.. | A366000
24 | 3 | 2 | X--X.. | A366002
25 | 3 | 2 | -X-X.. | A366004
26 | 3 | 2 | XX-X.. | A366006
27 | 3 | 2 | * --XX.. | A365653
28 | 3 | 2 | X-XX.. | A366008
29 | 3 | 2 | -XXX.. | A366010
30 | 3 | 2 | * XXXX.. | A365651
31 | 3 | 3 | * -.-..- | A063524
32 | 3 | 3 | * X.-..- | A001931
33 | 3 | 3 | * -.X..- | A039742
34 | 3 | 3 | * X.X..- |
35 | 3 | 3 | * -.-..X | A039741
36 | 3 | 3 | * X.-..X |
37 | 3 | 3 | * -.X..X |
38 | 3 | 3 | * X.X..X |
39 |!4 | 1 | * --.... | 4*A063524
40 |!4 | 1 | X-.... | 4*A000012
41 | 4 | 1 | -X.... | A366341
42 | 4 | 1 | * XX.... | A365562
43 |!4 | 2 | * -----. | 6*A063524
44 |!4 | 2 | X----. | 6*A001168
45 | 4 | 2 | -X---. | A366339
46 | 4 | 2 | * XX---. | A366335
47 |!4 | 2 | --X--. | 6*A001168
48 |!4 | 2 | X-X--. | 6*A006770

A001931 Number of fixed 3-dimensional polycubes with n cells; lattice animals in the simple cubic lattice (6 nearest neighbors), face-connected cubes.

Original entry on oeis.org

1, 3, 15, 86, 534, 3481, 23502, 162913, 1152870, 8294738, 60494549, 446205905, 3322769321, 24946773111, 188625900446, 1435074454755, 10977812452428, 84384157287999, 651459315795897, 5049008190434659, 39269513463794006, 306405169166373418
Offset: 1

Views

Author

Keywords

Comments

This gives the number of polycubes up to translation (but not rotation or reflection). - Charles R Greathouse IV, Oct 08 2013

References

  • W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Edited by Arun Giridhar, Feb 14 2011
a(17) from Achim Flammenkamp, Feb 15 1999
a(18) from the Aleksandrowicz and Barequet paper (N. J. A. Sloane, Jul 09 2009)
a(19) from Luther and Mertens by Gill Barequet, Jun 12 2011
a(20) from Stanley Dodds, Aug 03 2023
a(21)-a(22) (using Dodds's algorithm) from Phillip Thompson, Feb 07 2024

A030222 Number of n-polyplets (polyominoes connected at edges or corners); may contain holes.

Original entry on oeis.org

1, 2, 5, 22, 94, 524, 3031, 18770, 118133, 758381, 4915652, 32149296, 211637205, 1401194463, 9321454604, 62272330564, 417546684096
Offset: 1

Views

Author

Keywords

Comments

See A056840 for illustrations, valid also for this sequence up to n=4, but slightly misleading for polyplets with holes. See the colored areas in the illustration of A056840(5)=99 which correspond to identical 5-polyplets. (The 2+2+4-3 = 5 additional figures counted there correspond to the 4-square configuration with a hole inside ({2,4,6,8} on a numeric keyboard), with one additional square added in three inequivalent places: "inside" one angle (touching two sides), attached to one side, and attached to a corner. These do only count for 3 here, but for 8 in A056840.) It can be seen that A056840 counts a sort of "spanning trees" instead, i.e., simply connected graphs that connect all of the vertices (using only "King's moves", and maybe other additional constraints). - M. F. Hasler, Sep 29 2014

Examples

			XXX..XX...XX..X.X..X.. (the 5 for n=3)
.......X...X...X....X.
.....................X
		

Crossrefs

Cf. A006770.
10th row of A366766.

Extensions

Computed by Matthew Cook; extended by David W. Wilson
More terms from Joseph Myers, Sep 26 2002

A001420 Number of fixed 2-dimensional triangular-celled animals with n cells (n-iamonds, polyiamonds) in the 2-dimensional hexagonal lattice.

Original entry on oeis.org

2, 3, 6, 14, 36, 94, 250, 675, 1838, 5053, 14016, 39169, 110194, 311751, 886160, 2529260, 7244862, 20818498, 59994514, 173338962, 501994070, 1456891547, 4236446214, 12341035217, 36009329450, 105229462401, 307942754342, 902338712971, 2647263986022, 7775314024683, 22861250676074, 67284446545605
Offset: 1

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

References

  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Dec 15 2001
a(28) from Joseph Myers, Sep 24 2002
a(29)-a(31) from the Aleksandrowicz and Barequet paper (N. J. A. Sloane, Jul 09 2009)
Slightly edited by Gill Barequet, May 24 2011
a(32) from Paul Church, Oct 06 2011

A365995 Number of free polyominoids with n cells, allowing flat corner-connections and right-angled edge-connections.

Original entry on oeis.org

1, 2, 9, 66, 691, 9216, 134325
Offset: 1

Views

Author

Pontus von Brömssen, Sep 26 2023

Keywords

Comments

This sequence and the related sequences A365650-A365655 and A365996-A366010 count polyominoids (A075679) with different rules for how the cells can be connected. In these sequences, connections other than the specified ones are permitted, but the polyominoids must be connected through the specified connections only. The polyominoids counted by this sequence, for example, are allowed to have right-angled corner-connections and flat edge-connections, as long as they are not needed for the polyominoid to be connected. A connection is flat if the two neighboring cells lie in the same plane, otherwise it is right-angled.

Crossrefs

Cf. A365996 (fixed).
21st row of A366766.
The following table lists counting sequences for free, fixed, and one-sided polyominoids with different sets of allowed connections. "|" means flat connections and "L" means right-angled connections.
corner-connections | edge-connections | free | fixed | 1-sided
-------------------+------------------+---------+---------+--------
none | | | A000105 |3*A001168| A000105
none | L | A365654 | A365655 |
none | |L | A075679 | A075678 | A056846
| | none | A000105 |3*A001168| A000105
| | | | A030222 |3*A006770| A030222
| | L | A365995 | A365996 |
| | |L | A365997 | A365998 |
L | none | A365999 | A366000 |
L | | | A366001 | A366002 |
L | L | A366003 | A366004 |
L | |L | A366005 | A366006 |
|L | none | A365652 | A365653 |
|L | | | A366007 | A366008 |
|L | L | A366009 | A366010 |
|L | |L | A365650 | A365651 |

Extensions

a(7) from Pontus von Brömssen, Mar 03 2025

A319324 a(n) is the number of fixed polyglasses (polyiamonds which need only touch at corners) with n cells.

Original entry on oeis.org

2, 12, 88, 710, 6054, 53500, 484784, 4475010, 41902626, 396838992, 3793117200, 36534684066
Offset: 1

Views

Author

David Bevan, Sep 18 2018

Keywords

Comments

Polyglasses are to polyiamonds (A001420) as polyplets (A006770) are to polyominoes (A001168). The name derives from the 2-celled animal (diglass) which looks like an hourglass.

Examples

			a(2) = 12: three rotations of a diamond, three rotations of an hourglass and six rotations of "two mountains".
		

Crossrefs

Cf. A001420 (fixed polyiamonds), A319325 (row convex polyglasses), A319326 (column convex polyglasses).

Extensions

a(12) from Aaron N. Siegel, May 22 2022

A365651 Number of fixed n-polyominoids, allowing both corner- and edge-connections.

Original entry on oeis.org

3, 48, 1072, 27732, 781200
Offset: 1

Views

Author

Pontus von Brömssen, Sep 17 2023

Keywords

Crossrefs

Cf. A001168 (polyominoes), A006770 (polyplets), A075678 (polyominoids), A365650 (free), A365653 (corner-connections only).
30th row of A366767.

A187077 Number of row-convex polyplets with n cells.

Original entry on oeis.org

1, 4, 18, 83, 385, 1788, 8305, 38575, 179170, 832189, 3865253, 17952864, 83385309, 387298083, 1798875698, 8355202169, 38807241321, 180247221864, 837190686169, 3888482927823, 18060759310562, 83886449530197, 389625723579965
Offset: 1

Views

Author

David Bevan, Mar 03 2011

Keywords

Comments

Equivalent to a sequence of row-convex polyhexes (A059716).

Examples

			a(3) = 18 = A006770(3)-2 omits the two 3-plets with non-convex rows (V and inverted V).
		

Crossrefs

Cf. A006770 (all fixed polyplets); A059716 (row-convex polyhexes); A001169 (row-convex polyominoes).

Programs

  • Mathematica
    a[n_]:={1,4,18,83}[[n]]/;n<5; a[n_]:=a[n]=7a[n-1]-13a[n-2]+10a[n-3]-2a[n-4]; Array[a, 23]

Formula

G.f.: -((x(x-1)^3)/(1-7x+13x^2-10x^3+2x^4)).
a(n) = 7a(n-1)-13a(n-2)+10a(n-3)-2a(n-4) for n > 4.

A162678 Number of fixed strictly disconnected n-ominoes bounded (not necessarily tightly) by an n*n square.

Original entry on oeis.org

0, 2, 42, 937, 26427, 937126, 40290848, 2036152559, 118202398712, 7747410863508, 565695467280668, 45525704815211707, 4002930269942820774, 381750656962679848234, 39244733577786597223238
Offset: 1

Views

Author

David Bevan, Jul 28 2009

Keywords

Comments

a(n) = A162676(n) - A001168(n)

Examples

			a(2)=2: the two rotations of the disconnected domino consisting of two squares connected at a vertex
		

Crossrefs

Showing 1-10 of 12 results. Next