cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A038119 Number of n-celled solid polyominoes (or free polycubes, allowing mirror-image identification).

Original entry on oeis.org

1, 1, 2, 7, 23, 112, 607, 3811, 25413, 178083, 1279537, 9371094, 69513546, 520878101, 3934285874, 29915913663, 228779330204, 1758309223457, 13573319825615, 105192814197984, 818136047201932, 6383528588447574
Offset: 1

Views

Author

Keywords

Comments

a(1)-a(12) computed by Achim Flammenkamp.
A000162 but with one copy of each mirror-image deleted.
From R. J. Mathar, Mar 19 2018: (Start)
We can split the numbers into an irregular table which lists in row n how many configurations have c contacts for c >= 0:
1;
0 1;
0 0 2;
0 0 0 6 1;
0 0 0 0 21 2;
0 0 0 0 0 91 19 2;
0 0 0 0 0 0 484 110 12 1;
0 0 0 0 0 0 0 2817 852 129 12 0 1;
0 0 0 0 0 0 0 0 17788 6321 1166 132 5 1;
Row lengths are 1+A007818(n). Row sums are a(n).
(End)
Number of unoriented polyominoes with n cubical cells of the regular tiling with Schläfli symbol {4,3,4}. For unoriented polyominoes, chiral pairs are counted as one.- Robert A. Russell, Mar 21 2024

References

  • S. W. Golomb, Polyominoes. Scribner's, NY, 1965; second edition (Polyominoes: Puzzles, Packings, Problems and Patterns) Princeton Univ. Press, 1994.
  • W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972. [See https://books.google.nl/books?id=ja7iBQAAQBAJ&pg=PA101]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A000162 = A@000162;
    A007743 = A@007743;
    a[n_] := (A007743[[n]] + A000162[[n]])/2;
    a /@ Range[16] (* Jean-François Alcover, Jan 16 2020 *)

Formula

a(n) = A000162(n) - A371397(n) = A371397(n) + A007743(n). - Robert A. Russell, Mar 21 2024

Extensions

More terms from Brendan Owen (brendan_owen(AT)yahoo.com), Jan 02 2002
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
More terms from John Mason, Sep 19 2024

A000162 Number of 3-dimensional polyominoes (or polycubes) with n cells.

Original entry on oeis.org

1, 1, 2, 8, 29, 166, 1023, 6922, 48311, 346543, 2522522, 18598427, 138462649, 1039496297, 7859514470, 59795121480, 457409613979, 3516009200564, 27144143923583, 210375361379518, 1636229771639924, 12766882202755783
Offset: 1

Views

Author

Keywords

Comments

Here two polycubes that differ by reflection are considered different. - Joerg Arndt, Apr 26 2023
Number of oriented polyominoes with n cubical cells of the regular tiling with Schläfli symbol {4,3,4}. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Mar 21 2024

Examples

			Table showing total number and numbers with each group order.
-------------------------------------------------------------
The last 7 columns form sequences A066453, A066454, A066273, A066281, A066283, A066287, A066288.
.n ...A000162 ..group:.1.....2...3...4.6.8.24
.1 .........1..........0.....0...0...0.0.0..1
.2 .........1..........0.....0...0...0.0.1..0
.3 .........2..........0.....1...0...0.0.1..0
.4 .........8..........1.....4...1...0.0.2..0
.5 ........29.........17....10...0...0.0.2..0
.6 .......166........127....34...0...3.1.1..0
.7 ......1023........941....71...4...5.0.1..1
.8 ......6922.......6662...246...0..11.0.2..1
.9 .....48311......47771...522...3..11.0.4..0
10 ....346543.....344708..1783..24..24.2.2..0
11 ...2522522....2518713..3765...4..35.0.5..0
12 ..18598427...18585455.12858..18..84.5.7..0
13 .138462649..138434899.27496.151..92.2.8..1
14 1039496297.1039401564.94525..25.174.4.5..0
		

References

  • C. J. Bouwkamp, personal communication.
  • W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • W. F. Lunnon, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A038119 (unoriented), A371397 (chiral), A007743 (achiral), A001931 (fixed).

Formula

a(n) = 2*A038119 - A007743.
a(n) = A000105 + A006759.
a(n) = A038119(n) + A371397(n) = 2*A371397(n) + A007743(n). - Robert A. Russell, Mar 21 2024

Extensions

The old value for a(11), 2522572, was corrected by Achim Flammenkamp to 2522522, Feb 15 1999.
a(13)-a(14) from Brendan Owen (brendan_owen(AT)yahoo.com), Dec 27 2001
a(15)-a(16) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
a(17)-a(20) from Stanley Dodds, Dec 11 2023
a(21)-a(22) (using Dodds's algorithm) from Phillip Thompson, Feb 07 2024

A366767 Array read by antidiagonals, where each row is the counting sequence of a certain type of fixed polyominoids.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 0, 2, 2, 0, 1, 0, 2, 4, 2, 0, 1, 0, 2, 12, 6, 1, 0, 1, 0, 2, 38, 22, 0, 1, 0, 1, 0, 2, 126, 88, 0, 2, 1, 0, 1, 0, 2, 432, 372, 0, 6, 2, 1, 0, 1, 0, 2, 1520, 1628, 0, 19, 6, 4, 3, 0, 1, 0, 2, 5450, 7312, 0, 63, 19, 20, 0, 3
Offset: 1

Views

Author

Pontus von Brömssen, Oct 22 2023

Keywords

Comments

See A366766 (corresponding array for free polyominoids) for details.

Examples

			Array begins:
  n\k| 1  2  3   4   5    6     7      8      9      10       11        12
  ---+--------------------------------------------------------------------
   1 | 1  0  0   0   0    0     0      0      0       0        0         0
   2 | 1  1  1   1   1    1     1      1      1       1        1         1
   3 | 2  0  0   0   0    0     0      0      0       0        0         0
   4 | 2  2  2   2   2    2     2      2      2       2        2         2
   5 | 2  4 12  38 126  432  1520   5450  19820   72892   270536   1011722
   6 | 2  6 22  88 372 1628  7312  33466 155446  730534  3466170  16576874
   7 | 1  0  0   0   0    0     0      0      0       0        0         0
   8 | 1  2  6  19  63  216   760   2725   9910   36446   135268    505861
   9 | 1  2  6  19  63  216   760   2725   9910   36446   135268    505861
  10 | 1  4 20 110 638 3832 23592 147941 940982 6053180 39299408 257105146
  11 | 3  0  0   0   0    0     0      0      0       0        0         0
  12 | 3  3  3   3   3    3     3      3      3       3        3         3
		

Crossrefs

Cf. A366766 (free), A366768.
The following table lists some sequences that are rows of the array, together with the corresponding values of D, d, and C (see A366766). Some sequences occur in more than one row. Notation used in the table:
X: Allowed connection.
-: Not allowed connection (but may occur "by accident" as long as it is not needed for connectedness).
.: Not applicable for (D,d) in this row.
!: d < D and all connections have h = 0, so these polyominoids live in d < D dimensions only.
*: Whether a connection of type (g,h) is allowed or not is independent of h.
| | | connections |
| | | g:112223 |
n | D | d | h:010120 | sequence
----+---+---+-------------+----------
1 | 1 | 1 | * -..... | A063524
2 | 1 | 1 | * X..... | A000012
3 |!2 | 1 | * --.... | 2*A063524
4 |!2 | 1 | X-.... | 2*A000012
5 | 2 | 1 | -X.... | 2*A001168
6 | 2 | 1 | * XX.... | A096267
7 | 2 | 2 | * -.-... | A063524
8 | 2 | 2 | * X.-... | A001168
9 | 2 | 2 | * -.X... | A001168
10 | 2 | 2 | * X.X... | A006770
11 |!3 | 1 | * --.... | 3*A063524
12 |!3 | 1 | X-.... | 3*A000012
13 | 3 | 1 | -X.... | A365655
14 | 3 | 1 | * XX.... | A365560
15 |!3 | 2 | * ----.. | 3*A063524
16 |!3 | 2 | X---.. | 3*A001168
17 | 3 | 2 | -X--.. | A365655
18 | 3 | 2 | * XX--.. | A075678
19 |!3 | 2 | --X-.. | 3*A001168
20 |!3 | 2 | X-X-.. | 3*A006770
21 | 3 | 2 | -XX-.. | A365996
22 | 3 | 2 | XXX-.. | A365998
23 | 3 | 2 | ---X.. | A366000
24 | 3 | 2 | X--X.. | A366002
25 | 3 | 2 | -X-X.. | A366004
26 | 3 | 2 | XX-X.. | A366006
27 | 3 | 2 | * --XX.. | A365653
28 | 3 | 2 | X-XX.. | A366008
29 | 3 | 2 | -XXX.. | A366010
30 | 3 | 2 | * XXXX.. | A365651
31 | 3 | 3 | * -.-..- | A063524
32 | 3 | 3 | * X.-..- | A001931
33 | 3 | 3 | * -.X..- | A039742
34 | 3 | 3 | * X.X..- |
35 | 3 | 3 | * -.-..X | A039741
36 | 3 | 3 | * X.-..X |
37 | 3 | 3 | * -.X..X |
38 | 3 | 3 | * X.X..X |
39 |!4 | 1 | * --.... | 4*A063524
40 |!4 | 1 | X-.... | 4*A000012
41 | 4 | 1 | -X.... | A366341
42 | 4 | 1 | * XX.... | A365562
43 |!4 | 2 | * -----. | 6*A063524
44 |!4 | 2 | X----. | 6*A001168
45 | 4 | 2 | -X---. | A366339
46 | 4 | 2 | * XX---. | A366335
47 |!4 | 2 | --X--. | 6*A001168
48 |!4 | 2 | X-X--. | 6*A006770

A151830 Number of fixed 4-dimensional polycubes with n cells.

Original entry on oeis.org

1, 4, 28, 234, 2162, 21272, 218740, 2323730, 25314097, 281345096, 3178474308, 36400646766, 421693622520, 4933625049464, 58216226287844, 692095652493483
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

References

  • G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.
  • G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.
  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
  • R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.
  • S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565.

Crossrefs

Extensions

a(16) from Luther and Mertens by Gill Barequet, Jun 12 2011

A048663 Number of rooted polycubes with n cells, with no symmetries removed.

Original entry on oeis.org

1, 6, 45, 344, 2670, 20886, 164514, 1303304, 10375830, 82947380, 665440039, 5354470860, 43196001173, 349254823554, 2829388506690, 22961191276080, 186622811691276, 1518914831183982, 12377727000122043
Offset: 1

Views

Author

Richard C. Schroeppel, Dan Hoey

Keywords

Comments

"Rooted" means some cell of the polycube is designated as the origin. This has the effect of multiplying the count by the volume of the polycube.

Examples

			There are six dicubes, each consisting of the origin cube together with one adjacent cube, in each of the six directions.
		

References

  • Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.

Crossrefs

A row of the array in A048790.
Cf. A001931.

Programs

Formula

a(n) = n * A001931(n). - Andrew Howroyd, Dec 04 2018

Extensions

a(12)-a(19) from Andrew Howroyd, Dec 04 2018

A118356 Number of clusters with n vertices, n-1 edges and zero contacts on the simple cubic lattice.

Original entry on oeis.org

1, 3, 15, 83, 486, 2967, 18748, 121725, 807381, 5447203, 37264974, 257896500, 1802312605, 12701190885, 90157130289, 644022007040, 4626159163233
Offset: 1

Views

Author

R. J. Mathar, May 14 2006

Keywords

Comments

a(n)<=A001931(n) due to the "no-contact" restriction.
An alternative wording for a(n) is the number of n-cell fixed tree-like polycubes in 3 dimensions. - Gill Barequet, May 25 2011

References

  • G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.

Crossrefs

Cf. A066158 (fixed tree-like polyominoes), A191094, A191095, A191096, A191097, A191098 (fixed tree-like polycubes in 4, 5, 6, 7, and 8 dimensions, resp.).

Extensions

a(1)=1 added by Gill Barequet, May 25 2011

A151832 Number of fixed 6-dimensional polycubes with n cells.

Original entry on oeis.org

1, 6, 66, 901, 13881, 231008, 4057660, 74174927, 1398295989, 27012396022, 532327974882, 10665521789203, 216696065279573, 4455636282185802, 92567760074841818
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

References

  • Anthony J. Guttmann, editor. Polygons, Polyominoes and Polycubes, volume 775 of Lecture Notes in Physics. Springer-Verlag, Heidelberg, 2009.

Crossrefs

Programs

Formula

a(n) = A048667(n)/n. - Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A048667.

Extensions

a(10) from Gadi Aleksandrowicz (gadial(AT)gmail.com), Mar 21 2010
a(11)-a(15) from Luther and Mertens by Gill Barequet, Jun 12 2011
a(13) corrected by M. F. Hasler, Jun 26 2025

A151833 Number of fixed 7-dimensional polycubes with n cells.

Original entry on oeis.org

1, 7, 91, 1484, 27468, 551313, 11710328, 259379101, 5933702467, 139272913892, 3338026689018, 81406063278113, 2014611366114053, 50486299825273271
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

References

  • G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.
  • G. Aleksandrowicz and G. Barequet, Counting polycubes without the dimensionality curse, Discrete Mathematics, 309 (2009), 4576-4583.
  • G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.
  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
  • R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.
  • S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565.

Crossrefs

Programs

Formula

a(n) = A048668(n)/n. - Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A048668.

Extensions

More terms from Gadi Aleksandrowicz (gadial(AT)gmail.com), Mar 21 2010
a(11)-a(14) from Luther and Mertens by Gill Barequet, Jun 12 2011

A151834 Number of fixed 8-dimensional polycubes with n cells.

Original entry on oeis.org

1, 8, 120, 2276, 49204, 1156688, 28831384, 750455268, 20196669078, 558157620384, 15762232227968, 453181069339660, 13228272325440164, 391166062869849024
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

Comments

a(1)-a(10) can be computed by formulas in Barequet et al. (2010). Luther and Mertens confirm these values (and add two more) by direct counting.

Crossrefs

Extensions

More terms from Gadi Aleksandrowicz (gadial(AT)gmail.com), Mar 21 2010
a(9)-a(12) from Luther and Mertens by Gill Barequet, Jun 12 2011
a(13)-a(14) from Mertens added by Andrey Zabolotskiy, Jan 29 2023

A151831 Number of fixed 5-dimensional polycubes with n cells.

Original entry on oeis.org

1, 5, 45, 495, 6095, 80617, 1121075, 16177405, 240196280, 3648115531, 56440473990, 886696345225, 14111836458890, 227093585071305, 3689707621144614
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

References

  • G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.
  • G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.
  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
  • R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.
  • S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565.

Crossrefs

Programs

Formula

a(n) = A048666(n)/n. - Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A048666.

Extensions

a(14) and a(15) from Luther and Mertens by Gill Barequet, Jun 12 2011
Showing 1-10 of 19 results. Next