cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A054760 Table T(n,k) = order of (n,k)-cage (smallest n-regular graph of girth k), n >= 2, k >= 3, read by antidiagonals.

Original entry on oeis.org

3, 4, 4, 5, 6, 5, 6, 8, 10, 6, 7, 10, 19, 14, 7, 8, 12, 30, 26, 24, 8, 9, 14, 40, 42, 67, 30, 9, 10, 16, 50, 62
Offset: 0

Views

Author

N. J. A. Sloane, Apr 26 2000

Keywords

Examples

			First eight antidiagonals are:
   3  4  5  6  7  8  9 10
   4  6 10 14 24 30 58
   5  8 19 26 67 80
   6 10 30 42  ?
   7 12 40 62
   8 14 50
   9 16
  10
		

References

  • P. R. Christopher, Degree monotonicity of cages, Graph Theory Notes of New York, 38 (2000), 29-32.

Crossrefs

Moore lower bound: A198300.
Orders of cages: this sequence (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), A191595 (n,5).
Graphs not required to be regular: A006787, A006856.

Formula

T(k,g) >= A198300(k,g) with equality if and only if: k = 2 and g >= 3; g = 3 and k >= 2; g = 4 and k >= 2; g = 5 and k = 2, 3, 7 or possibly 57; or g = 6, 8, or 12, and there exists a symmetric generalized g/2-gon of order k - 1. - Jason Kimberley, Jan 01 2013

Extensions

Edited by Jason Kimberley, Apr 25 2010, Oct 26 2011, Dec 21 2012, Jan 01 2013

A000066 Smallest number of vertices in trivalent graph with girth (shortest cycle) = n.

Original entry on oeis.org

4, 6, 10, 14, 24, 30, 58, 70, 112, 126
Offset: 3

Views

Author

Keywords

Comments

Also called the order of the (3,n) cage graph.
Recently (unpublished) McKay and Myrvold proved that the minimal graph on 112 vertices is unique. - May 20 2003
If there are n vertices and e edges, then 3n=2e, so n is always even.
Current lower bounds for a(13)..a(32) are 202, 258, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072. - from Table 3 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012
Current upper bounds for a(13)..a(32) are 272, 384, 620, 960, 2176, 2560, 4324, 5376, 16028, 16206, 49326, 49608, 108906, 109200, 285852, 415104, 1141484, 1143408, 3649794, 3650304. - from Table 3 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012

References

  • A. T. Balaban, Trivalent graphs of girth nine and eleven and relationships among cages, Rev. Roum. Math. Pures et Appl. 18 (1973) 1033-1043.
  • Brendan McKay, personal communication.
  • H. Sachs, On regular graphs with given girth, pp. 91-97 of M. Fiedler, editor, Theory of Graphs and Its Applications: Proceedings of the Symposium, Smolenice, Czechoslovakia, 1963. Academic Press, NY, 1964.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006787, A052453 (number of such graphs).
Orders of cages: A054760 (n,k), this sequence (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), A191595 (n,5).

Formula

For all g > 2, a(g) >= A027383(g-1), with equality if and only if g = 3, 4, 5, 6, 8, or 12. - Jason Kimberley, Dec 21 2012 and Jan 01 2013

Extensions

Additional comments from Matthew Cook, May 15 2003
Balaban proved 112 as an upper bound for a(11). The proof that it is also a lower bound is in the paper by Brendan McKay, W. Myrvold and J. Nadon.

A128042 Triangle read by columns: number of n-node (unlabeled) connected graphs with girth k, for n >= 3, k >= 3.

Original entry on oeis.org

1, 3, 1, 15, 2, 1, 93, 11, 1, 1, 794, 41, 5, 1, 1, 10850, 220, 16, 6, 1, 1, 259700, 1243, 66, 17, 5, 1, 1, 11706739, 9368, 266, 69, 15, 6, 1, 1, 1006609723, 89049, 1235, 239, 58, 18, 6, 1, 1, 164058686415, 1135894, 6350, 962, 202, 74, 19, 7, 1, 1
Offset: 3

Views

Author

Keith Briggs, May 05 2007

Keywords

Examples

			Number of n-node (unlabeled) connected graphs with girth k:
.k..|.n=........3........4........5........6........7........8........9........10
---------------------------------------------------------------------------------
.0..|...........0........0........0........0........0........0........0.........0
.1..|...........0........0........0........0........0........0........0.........0
.2..|...........0........0........0........0........0........0........0.........0
.3..|...........1........3.......15.......93......794....10850...259700..11706739
.4..|...........0........1........2.......11.......41......220.....1243......9368
.5..|...........0........0........1........1........5.......16.......66.......266
.6..|...........0........0........0........1........1........6.......17........69
.7..|...........0........0........0........0........1........1........5........15
.8..|...........0........0........0........0........0........1........1.........6
.9..|...........0........0........0........0........0........0........1.........1
10..|...........0........0........0........0........0........0........0.........1
11..|...........0........0........0........0........0........0........0.........0
		

Crossrefs

Sequences for k=3..6 are A128240, A128241, A128242, A128243.
Cf. A325455 (circumference).

Programs

Extensions

Corrected and extended by Martin Fuller, May 01 2015

A128041 Triangle read by columns: number of n-node (unlabeled) graphs with girth k, for n >= 3, k >= 3.

Original entry on oeis.org

1, 4, 1, 20, 3, 1, 118, 15, 2, 1, 937, 59, 8, 2, 1, 11936, 296, 26, 9, 2, 1, 272771, 1604, 101, 28, 8, 2, 1, 11992996, 11303, 396, 107, 25, 9, 2, 1, 1018892793, 102108, 1744, 376, 92, 29, 9, 2, 1, 165089910412, 1250114, 8531, 1457, 321, 113, 30, 10, 2, 1
Offset: 3

Views

Author

Keith Briggs, May 05 2007

Keywords

Examples

			Number of n-node (unlabeled) graphs with girth k, for n >= 3, k >= 3.
.k..|.n=........3........4........5........6........7........8........9........10
---------------------------------------------------------------------------------
.0..|...........0........0........0........0........0........0........0.........0
.1..|...........0........0........0........0........0........0........0.........0
.2..|...........0........0........0........0........0........0........0.........0
.3..|...........1........4.......20......118......937....11936...272771..11992996
.4..|...........0........1........3.......15.......59......296.....1604.....11303
.5..|...........0........0........1........2........8.......26......101.......396
.6..|...........0........0........0........1........2........9.......28.......107
.7..|...........0........0........0........0........1........2........8........25
.8..|...........0........0........0........0........0........1........2.........9
.9..|...........0........0........0........0........0........0........1.........2
10..|...........0........0........0........0........0........0........0.........1
		

Crossrefs

Programs

Extensions

Corrected and extended by Martin Fuller, May 01 2015

A128237 Number of n-node (unlabeled) graphs with girth 4.

Original entry on oeis.org

0, 1, 3, 15, 59, 296, 1604, 11303, 102108, 1250114, 20738069, 467523871, 14230096759, 581439661069, 31720637440030
Offset: 3

Views

Author

Keith Briggs, May 05 2007

Keywords

Crossrefs

Formula

a(n) = A006785(n) - A006787(n).

Extensions

Corrected and extended by Martin Fuller, May 01 2015

A126757 Number of n-node connected graphs with no cycles of length less than 5.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 18, 47, 137, 464, 1793, 8167, 43645, 275480, 2045279, 17772647, 179593823, 2098423758, 28215583324, 434936005284, 7662164738118
Offset: 1

Views

Author

N. J. A. Sloane, Feb 18 2007

Keywords

Crossrefs

Programs

Formula

This is the inverse Euler transform of A006787. - Conjectured by Vladeta Jovovic, Jun 16 2008, proved by Max Alekseyev and Brendan McKay, Jun 17 2008

Extensions

Definition corrected by Max Alekseyev and Brendan McKay, Jun 17 2008
a(20)-a(21) using Brendan McKay's extension to A006787 by Alois P. Heinz, Mar 11 2018

A300705 Triangle T(n,k) read by rows: the number of n-node connected graphs with k components with no cycles of length less than 5.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 4, 3, 2, 1, 1, 0, 8, 7, 4, 2, 1, 1, 0, 18, 14, 8, 4, 2, 1, 1, 0, 47, 33, 17, 9, 4, 2, 1, 1, 0, 137, 81, 40, 18, 9, 4, 2, 1, 1, 0, 464, 228, 98, 43, 19, 9, 4, 2, 1, 1, 0, 1793, 716, 269, 105, 44, 19, 9, 4, 2, 1, 1, 0, 8167, 2596, 827, 287, 108, 45, 19, 9, 4, 2, 1, 1, 0
Offset: 0

Views

Author

R. J. Mathar, Mar 12 2018

Keywords

Comments

Multiset transform of A126757.

Examples

			The triangle starts in row n=0 with columns 0<=k<=n as:
 1;
0 1
0 1 1
0 1 1 1
0 2 2 1 1
0 4 3 2 1 1
0 8 7 4 2 1 1
0 18 14 8 4 2 1 1
0 47 33 17 9 4 2 1 1
0 137 81 40 18 9 4 2 1 1
0 464 228 98 43 19 9 4 2 1 1
0 1793 716 269 105 44 19 9 4 2 1 1
0 8167 2596 827 287 108 45 19 9 4 2 1 1
0 43645 11030 2904 870 294 109 45 19 9 4 2 1 1
0 275480 55628 11992 3022 888 297 110 45 19 9 4 2 1 1
0 2045279 334676 58968 12320 3066 895 298 110 45 19 9 4 2 1 1
0 17772647 2395216 348166 59991 12440 3084 898 299 110 45 19 9 4 2 1 1
		

Crossrefs

Cf. A126757 (column k=1), A006787 (row sums)

A337685 Number of labeled n-node graphs with no cycles of length less than 5.

Original entry on oeis.org

1, 2, 7, 38, 303, 3424, 53365, 1121412, 31197241, 1131759944, 52851880791, 3141661092280, 235381934211847, 22034726000877312, 2557207299577993717, 365328083228276428304, 63837414801921587915025, 13564359864218330055841312, 3485934653871954826576733959
Offset: 1

Views

Author

Brendan McKay, Sep 15 2020

Keywords

Comments

Equivalently, labeled graphs of girth at least 5. Disconnected graphs are included.

Crossrefs

LOG transform of A345349.
A006787 counts isomorphism classes.

A345349 Number of connected labeled n-node graphs with no cycles of length less than 5.

Original entry on oeis.org

1, 1, 3, 16, 137, 1716, 29767, 689704, 20868129, 811683280, 40112905211, 2495678969664, 193978310951977, 18707104147471936, 2224427540682088575, 324218245786867111936, 57606132897772268960513, 12412563223145385150556416, 3227770981209698325415487539
Offset: 1

Views

Author

Brendan McKay, Jun 15 2021

Keywords

Comments

Equivalently, connected labeled graphs of girth at least 5.

Crossrefs

EXP transform of A337685.
A006787 counts isomorphism classes.
Showing 1-9 of 9 results.