cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006888 a(n) = a(n-1) + a(n-2)*a(n-3) for n > 2 with a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 11, 26, 81, 367, 2473, 32200, 939791, 80570391, 30341840591, 75749670168872, 2444729709746709953, 2298386861814452020993305, 185187471463742319884263934176321, 5618934645754484318302453706799174724040986
Offset: 0

Views

Author

Keywords

Comments

Tends towards something like 1.60119...^(1.3247...^n) where 1.3247... = (1/2+sqrt(23/108))^(1/3)+(1/2-sqrt(23/108))^(1/3) is the smallest Pisot-Vijayaraghavan number A060006. Any four consecutive terms are pairwise coprime. - Henry Bottomley, Sep 25 2002

Examples

			From _Muniru A Asiru_, Jan 28 2018: (Start)
a(3) = a(2) + a(1) * a(0) = 1 + 1 * 1 = 2.
a(4) = a(3) + a(2) * a(1) = 2 + 1 * 1 = 3.
a(5) = a(4) + a(3) * a(2) = 3 + 2 * 1 = 5.
a(6) = a(5) + a(4) * a(3) = 5 + 3 * 2 = 11.
a(7) = a(6) + a(5) * a(4) = 11 + 5 * 3 = 26.
...
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • GAP
    a := [1,1,1];; for n in [4..35] do a[n] := a[n-1] + a[n-2] * a[n-3]; od; a; # Muniru A Asiru, Jan 28 2018
  • Maple
    a := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n=2 then 1 elif n>=3 then procname(n-1) + procname(n-2) * procname(n-3) fi; end:
    seq(a(n), n=0..35); # Muniru A Asiru, Jan 28 2018
  • Mathematica
    a=1;b=1;c=1;lst={a,b,c};Do[d=a*b+c;AppendTo[lst,d];a=b;b=c;c=d,{n,2*4!}];lst  (* Vladimir Joseph Stephan Orlovsky, Sep 13 2009 *)
    Nest[Append[#, Last[#] + Times @@ #[[-3 ;; -2]]] &, {1, 1, 1}, 17] (* Michael De Vlieger, Jan 23 2018 *)
    nxt[{a_,b_,c_}]:={b,c,c+b*a}; NestList[nxt,{1,1,1},20][[All,1]] (* Harvey P. Dale, Feb 03 2021 *)

Formula

Limit_{n->infinity} a(n)/(a(n-1)*a(n-5)) = 1 agrees with lim_{n->infinity} a(n) = c^(P^n) (c=1.60119..., P=PisotV) since PisotV is real root of x^3-x-1 and thus a root of x^5-x^4-1 because x^5-x^4-1 = (x^3-x-1)*(x^2-x+1) and c^(P^n)/(c^(P^(n-1))*c^(P^(n-5))) = c^(P^(n-5)*(P^5-P^4-1)). - Gerald McGarvey, Aug 14 2004

Extensions

More terms from Michel ten Voorde Apr 11 2001
Typo in Mathematica code corrected by Vincenzo Librandi, Jun 09 2013
Definition clarified by Matthew Conroy, Jan 23 2018