A007009 Number of 3-voter voting schemes with n linearly ranked choices.
1, 4, 12, 27, 54, 96, 160, 250, 375, 540, 756, 1029, 1372, 1792, 2304, 2916, 3645, 4500, 5500, 6655, 7986, 9504, 11232, 13182, 15379, 17836, 20580, 23625, 27000, 30720, 34816, 39304, 44217, 49572, 55404, 61731, 68590, 76000, 84000, 92610, 101871, 111804
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Daniel E. Loeb, On Games, Voting Schemes and Distributive Lattices. LaBRI Report 625-93, University of Bordeaux I, 1993. [broken link]
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
Crossrefs
Cf. A034828 (first differences).
Programs
-
Magma
I:=[1,4,12,27,54,96,160]; [n le 7 select I[n] else 3*Self(n-1)-Self(n-2)- 5*Self(n-3)+5*Self(n-4)+Self(n-5)-3*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Sep 21 2015
-
Maple
a:= n-> (Matrix([[0$4, 1, 4, 12, 27]]). Matrix(8, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [4, -4, -4, 10, -4, -4, 4, -1][i], 0)))^n)[1, 1]: seq(a(n), n=1..40); # Alois P. Heinz, Aug 13 2008
-
Mathematica
LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {1, 4, 12, 27, 54, 96, 160}, 50] (* Vincenzo Librandi, Sep 21 2015 *)
-
PARI
Vec(x*(1-x^3)/((1-x)^4*(1-x^2)^2) + O(x^100)) \\ Colin Barker, Jan 07 2016
Formula
G.f.: x*(1-x^3)/((1-x)^4*(1-x^2)^2) = x*(1+x+x^2)/((1-x)^5*(1+x)^2).
a(n) = (1/2)*Sum_{k=1..n+1} k*floor(k/2)*ceiling(k/2). - Vladeta Jovovic, Apr 29 2006
a(n) = A006009(n)/4.
a(n) = (n^4 + 6*n^3 + 12*n^2 + 8*n)/32 for n even; a(n) = (n^4 + 6*n^3 + 12*n^2 + 10*n + 3)/32 for n odd. - Colin Barker, Jan 07 2016
Extensions
More terms from James Sellers, Sep 08 2000
Comments