cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007009 Number of 3-voter voting schemes with n linearly ranked choices.

Original entry on oeis.org

1, 4, 12, 27, 54, 96, 160, 250, 375, 540, 756, 1029, 1372, 1792, 2304, 2916, 3645, 4500, 5500, 6655, 7986, 9504, 11232, 13182, 15379, 17836, 20580, 23625, 27000, 30720, 34816, 39304, 44217, 49572, 55404, 61731, 68590, 76000, 84000, 92610, 101871, 111804
Offset: 1

Views

Author

Keywords

Comments

With a(0) = 0 nontrivial integer solutions of (x + y)^3 = (x - y)^4. If x = a(n) then y = a(n + (-1)^n). - Thomas Scheuerle, Mar 22 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A034828 (first differences).

Programs

  • Magma
    I:=[1,4,12,27,54,96,160]; [n le 7 select I[n] else 3*Self(n-1)-Self(n-2)- 5*Self(n-3)+5*Self(n-4)+Self(n-5)-3*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Sep 21 2015
    
  • Maple
    a:= n-> (Matrix([[0$4, 1, 4, 12, 27]]). Matrix(8, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [4, -4, -4, 10, -4, -4, 4, -1][i], 0)))^n)[1, 1]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Aug 13 2008
  • Mathematica
    LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {1, 4, 12, 27, 54, 96, 160}, 50] (* Vincenzo Librandi, Sep 21 2015 *)
  • PARI
    Vec(x*(1-x^3)/((1-x)^4*(1-x^2)^2) + O(x^100)) \\ Colin Barker, Jan 07 2016

Formula

G.f.: x*(1-x^3)/((1-x)^4*(1-x^2)^2) = x*(1+x+x^2)/((1-x)^5*(1+x)^2).
a(n) = (1/2)*Sum_{k=1..n+1} k*floor(k/2)*ceiling(k/2). - Vladeta Jovovic, Apr 29 2006
a(n) = A006009(n)/4.
a(n) = A007590(n+2)*A007590(n+1)/8. - Richard R. Forberg, Dec 03 2013
For n > 1, a(n) = A000332(n+3) - A002624(n-2). - Antal Pinter, Sep 20 2015
a(n) = (n^4 + 6*n^3 + 12*n^2 + 8*n)/32 for n even; a(n) = (n^4 + 6*n^3 + 12*n^2 + 10*n + 3)/32 for n odd. - Colin Barker, Jan 07 2016

Extensions

More terms from James Sellers, Sep 08 2000