cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007054 Super ballot numbers: 6(2n)!/(n!(n+2)!).

Original entry on oeis.org

3, 2, 3, 6, 14, 36, 99, 286, 858, 2652, 8398, 27132, 89148, 297160, 1002915, 3421710, 11785890, 40940460, 143291610, 504932340, 1790214660, 6382504440, 22870640910, 82334307276, 297670187844, 1080432533656, 3935861372604, 14386251913656, 52749590350072
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is 2n+3. The Hankel transform of a(n+1) is n+2. The sequence a(n)-2*0^n has Hankel transform A110331(n). - Paul Barry, Jul 20 2008
Number of pairs of Dyck paths of total length 2*n with heights differing by at most 1 (Gessel/Xin, p. 2). - Joerg Arndt, Sep 01 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [6*Factorial(2*n)/(Factorial(n)*Factorial(n+2)): n in [0..30]]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    seq(3*(2*n)!/(n!)^2/binomial(n+2,n), n=0..22); # Zerinvary Lajos, Jun 28 2007
    A007054 := n -> 6*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(3+n)):
    seq(A007054(n),n=0..28); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[6(2n)!/(n!(n+2)!),{n,0,30}] (* or *) CoefficientList[Series[ (-1+Sqrt[1-4*x]+(6-4*Sqrt[1-4*x])*x)/(2*x^2),{x,0,30}],x] (* Harvey P. Dale, Oct 05 2011 *)
  • PARI
    a(n)=6*(2*n)!/(n!*(n+2)!); /* Joerg Arndt, Sep 01 2012 */
    
  • Sage
    def A007054(n): return (-4)^(2 + n)*binomial(3/2, 2 + n)/2
    print([A007054(n) for n in range(29)])  # Peter Luschny, Nov 04 2021

Formula

G.f.: c(x)*(4-c(x)), where c(x) = g.f. for Catalan numbers A000108; Convolution of Catalan numbers with negative Catalan numbers but -C(0)=-1 replaced by 3. - Wolfdieter Lang
E.g.f. in Maple notation: exp(2*x)*(4*x*(BesselI(0, 2*x)-BesselI(1, 2*x))-BesselI(1, 2*x))/x. Integral representation as n-th moment of a positive function on [0, 4], in Maple notation: a(n)=int(x^n*(4-x)^(3/2)/x^(1/2), x=0..4)/(2*Pi), n=0, 1, ... This representation is unique. - Karol A. Penson, Oct 10 2001
E.g.f.: Sum_{n>=0} a(n)*x^(2*n) = 3*BesselI(2, 2x).
a(n) = A000108(n)*6/(n+2). - Philippe Deléham, Oct 30 2007
a(n+1) = 2*(A000108(n+2) - A000108(n+1))/(n+1). - Paul Barry, Jul 20 2008
G.f.: ((6-4*sqrt(1-4*x))*x+sqrt(1-4*x)-1)/(2*x^2) - Harvey P. Dale, Oct 05 2011
a(n) = 4*A000108(n) - A000108(n+1) (Gessel/Xin, p. 2). - Joerg Arndt, Sep 01 2012
D-finite with recurrence (n+2)*a(n) +2*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Dec 03 2012
G.f.: 1/(x^2*G(0)) + 3/x - (1/2)/x^2, where G(k) = 1 + 1/(1 - 2*x*(2*k+3)/(2*x*(2*k+3) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: 3/x - 1/(2*x^2) + G(0)/(4*x^2), where G(k) = 1 + 1/(1 - 2*x*(2*k-3)/(2*x*(2*k-3) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 18 2013
0 = a(n)*(+16*a(n+1) - 14*a(n+2)) + a(n+1)*(+6*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 18 2014
A002421(n+2) = 2*a(n) for all n in Z. - Michael Somos, Sep 18 2014
a(n) = 3*(2*n)!*[x^(2*n)]hypergeometric([],[3],x^2). - Peter Luschny, Feb 01 2015
a(n) = 6*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(3+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^(2 + n)*binomial(3/2, 2 + n)/2. - Peter Luschny, Nov 04 2021
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + 20*Pi/(81*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 3/25 - 8*log(phi)/(25*sqrt(5)), where phi is the golden ratio (A001622). (End)
a(n-1) = 3*A000984(n)/((2*n-1)*(n+1)). - R. J. Mathar, Jul 12 2024

Extensions

Corrected and extended by Vincenzo Librandi, Aug 20 2011