A038665
Convolution of A007054 (super ballot numbers) with A000984 (central binomial coefficients).
Original entry on oeis.org
3, 8, 25, 84, 294, 1056, 3861, 14300, 53482, 201552, 764218, 2912168, 11143500, 42791040, 164812365, 636438060, 2463251010, 9552774000, 37112526990, 144410649240, 562724141460, 2195581527360, 8576490341250, 33537507830424
Offset: 0
A038679
Convolution of A007054 (Super ballot numbers) with A000302 (powers of 4).
Original entry on oeis.org
3, 14, 59, 242, 982, 3964, 15955, 64106, 257282, 1031780, 4135518, 16569204, 66365964, 265761016, 1064046979, 4259609626, 17050224394, 68241838036, 273110643754, 1092947507356, 4373580244084, 17500703480776
Offset: 0
A005700
a(n) = C(n)*C(n+2) - C(n+1)^2 where C() are the Catalan numbers A000108.
Original entry on oeis.org
1, 1, 3, 14, 84, 594, 4719, 40898, 379236, 3711916, 37975756, 403127256, 4415203280, 49671036900, 571947380775, 6721316278650, 80419959684900, 977737404590100, 12058761323277900, 150656212896017400, 1904342169333848400, 24328661192286773400, 313839729380499376860
Offset: 0
Example: a(2)=3 counts EWEW, EEWW, ENSW.
G.f. = 1 + x + 3*x^2 + 14*x^3 + 84*x^4 + 594*x^5 + 4719*x^6 + 40898*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Andrei Asinowski, Cyril Banderier, and Sarah J. Selkirk, From Kreweras to Gessel: A walk through patterns in the quarter plane, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #30.
- Jonathan Bloom and Sergi Elizalde, Pattern avoidance in matchings and partitions, arXiv preprint arXiv:1211.3442 [math.CO], 2012. See Table 1.
- N. Bonichon, A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths, Discr. Math., 298 (2005), 104-114.
- Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020. See Section 2.
- W. Y. C. Cheng, E. Y. P. Deng, R. R. X. Du, R. P. Stanley and C. H. Yan, Crossings and nestings of matchings and partitions, arXiv:math/0501230 [math.CO], 2005.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
- C. P. Davis-Stober, A bijection between a set of lexicographic semiorders and pairs of non-crossing Dyck paths, Journal of Mathematical Psychology, 54, 471-474.
- Myriam de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique, PhD Dissertation, Université Bordeaux I, 1983. (Annotated scanned copy of pages III.42-III.45)
- Colin Defant, Catalan Intervals and Uniquely Sorted Permutations, arXiv:1904.02627 [math.CO], 2019.
- Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011. See Theorem 8.4.
- E. Fusy, D. Poulalhon, and G. Schaeffer, Bijective counting of plane bipolar orientations and Schnyder words, Eur. J. Combinat. 30 (2009) 1646-1658, eq (2).
- Juan B. Gil, Peter R. W. McNamara, Jordan O. Tirrell, and Michael D. Weiner, From Dyck paths to standard Young tableaux, arXiv:1708.00513 [math.CO], 2017.
- D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableaux de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, Springer 1986.
- D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableaux de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, Springer, 1986. (Annotated scanned copy)
- D. Gouyou-Beauchamps. Standard Young tableaux of height 4 and 5, European J. Combin. 10 (1989) 69 - 82.
- Nicholas M. Katz, A Note on Random Matrix Integrals, Moment Identities, and Catalan Numbers, preprint, 2015; Mathemtika, Volume 62, Issue 3 2016 , pp. 811-817.
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
- Alec Mihailovs, Enumeration of walks on lattices, arXiv:math/9803128 (1998).
- Heinrich Niederhausen, A Note on the Enumeration of Diffusion Walks in the First Octant by Their Number of Contacts with the Diagonal, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.3.
- Maya Sankar, Further Bijections to Pattern-Avoiding Valid Hook Configurations, arXiv:1910.08895 [math.CO], 2019.
- Robert Scherer, Topics in Number Theory and Combinatorics, Ph. D. Dissertation, Univ. of California Davis (2021).
- Index entries for sequences related to Young tableaux.
A column of the triangle in
A179898. A diagonal of the triangle in
A185249.
-
p_tensor(2*n,[0,1],B2)|[0,0]
-
p_tensor(2*n,[1,0],C2)|[0,0]
-
[6*Factorial(2*n)*Factorial(2*n+2)/(Factorial(n)*Factorial(n+1)* Factorial(n+2)*Factorial(n+3)): n in [0..25]]; // Vincenzo Librandi, Aug 04 2011
-
CoefficientList[ Series[ HypergeometricPFQ[ {1, 1/2, 3/2}, {3, 4}, 16 x], {x, 0, 19}], x]
a[ n_] := If[ n < 1, Boole[n == 0], Det[ Table[ Binomial[i + 1, j - i + 2], {i, n}, {j, n}]]]; (* Michael Somos, Feb 25 2014 *) (* slight modification of David Callan formula *)
a[ n_] := 12 * 4^n * (2*n-1)!! * (2*n+1)!! / ((n+2)! * (n+3)!); (* Michael Somos, Oct 02 2014 *)
-
a(n)=6*binomial(2*n+2,n)*(2*n)!/(n+1)!/(n+3)! \\ Charles R Greathouse IV, Aug 04 2011
-
{a(n) = if( n<0, if( n<-2, 0, [-3/2, -1/4][-n]), 6 * (2*n)! * (2*n+2)! / (n! * (n+1)! * (n+2)! * (n+3)!))}; /* Michael Somos, Oct 02 2014 */
A000257
Number of rooted bicubic maps: a(n) = (8*n-4)*a(n-1)/(n+2) for n >= 2, a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 3, 12, 56, 288, 1584, 9152, 54912, 339456, 2149888, 13891584, 91287552, 608583680, 4107939840, 28030648320, 193100021760, 1341536993280, 9390758952960, 66182491668480, 469294031831040, 3346270487838720, 23981605162844160, 172667557172477952
Offset: 0
G.f. = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + 288*x^5 + 1584*x^6 + 9152*x^7 + ...
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 321.
- L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin., Vol. 54 (2000), pp. 149-160.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- Edward A. Bender and E. Rodney Canfield, The number of degree restricted maps on the sphere, SIAM J. Discr. Math., Vol. 7, No. 1 (1994), pp. 9-15.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
- Jonathan Bloom and Vince Vatter, Two Vignettes On Full Rook Placements, arXiv preprint arXiv:1310.6073 [math.CO], 2013.
- Miklós Bóna, Exact enumeration of 1342-avoiding permutations: A close link with labeled trees and planar maps, arXiv:math/9702223 [math.CO], 1997.
- Nicolas Bonichon, Mireille Bousquet-Mélou, Paul Dorbec, and Claire Pennarun, On the number of planar Eulerian orientations, arXiv:1610.09837 [math.CO], 2016.
- Nicolas Bonichon, Mireille Bousquet-Mélou, and Éric Fusy, Baxter permutations and plane bipolar orientations Sem. Lothar. Combin. 61A (2009/10), Art. B61Ah, 29 pp. See Section 8. - _N. J. A. Sloane_, Mar 27 2014
- Valentin Bonzom, Guillaume Chapuy, and Maciej Dolega, Enumeration of non-oriented maps via integrability, Alg. Combin. 5 (6) (2022) pp. 1363-1390, A.2.
- Alin Bostan, Frédéric Chyzak, and Vincent Pilaud, Refined product formulas for Tamari intervals, arXiv:2303.10986 [math.CO], 2023.
- Mireille Bousquet-Mélou, Limit laws for embedded trees, arXiv:math/0501266 [math.CO], 2005.
- Mireille Bousquet-Mélou and G. Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math., Vol. 24, No. 4 (2000), pp. 337-368.
- Frédéric Chapoton, Sur le nombre d'intervalles dans les treillis de Tamari, arXiv:math/0602368 [math.CO], 2006.
- P. Di Francesco, O. Golinelli and E. Guitter, Meanders and the Temperley-Lieb algebra, arXiv:hep-th/9602025, 1996; see Eq. C.1.
- Wenjie Fang, Bijective link between Chapoton's new intervals and bipartite planar maps, arXiv:2001.04723 [math.CO], 2020.
- Alice L.L. Gao, Sergey Kitaev, and Philip B. Zhang, On pattern avoiding indecomposable permutations, arXiv:1605.05490 [math.CO], 2016.
- Juan B. Gil, David Kenepp, and Michael Weiner, Pattern-avoiding permutations by inactive sites, Pennsylvania State University, Altoona (2020).
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- Christian Kassel and Christophe Reutenauer, Algebraicity of the zeta function associated to a matrix over a free group algebra, arXiv:1303.3481 [math.CO], 2013-2014.
- Philippe Leroux, A simple symmetry generating operads related to rooted planar m-ary trees and polygonal numbers, arXiv:math/0512437 [math.CO], 2005.
- Zhaoxiang Li and Yanpei Liu, Chromatic sums of general maps on the sphere and the projective plane, Discr. Math., Vol. 307, No. 1 (2007), pp. 78-87.
- Valery A. Liskovets and Timothy R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., Vol. 282, No. 1-3 (2004), pp. 209-221.
- Alexander Mednykh and Roman Nedela, Counting unrooted hypermaps on closed orientable surface, 18th Intern. Conf. Formal Power Series & Algebr. Comb., Jun 19, 2006, San Diego, California (USA).
- Alexander Mednykh and Roman Nedela, Enumeration of unrooted hypermaps of a given genus, Discr. Math., Vol. 310, No. 3 (2010), pp. 518-526. [From _N. J. A. Sloane_, Dec 19 2009]
- Mednykh, A.; Nedela, R. Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016). Table 2
- Wojciech Mlotkowski and Karol A. Penson, A Fuss-type family of positive definite sequences, arXiv:1507.07312 [math.PR], 2015.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série., arXiv:0912.0072 [math.NT], 2009; FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics.
- W. T. Tutte, A Census of Planar Maps, Canad. J. Math., Vol. 15 (1963), pp. 249-271.
- T. R. S. Walsh, Hypermaps versus bipartite maps, J. Combin. Th., Series B, Vol. 18, No. 2 (1975), pp. 155-163.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps.
- T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq., Vol. 18 (2015), Article 15.4.3.
- Peter G. Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, International Mathematics Research Notices, Volume 2015, Issue 24 (1 January 2015), pp. 13533-13544.
-
[1] cat [3*2^n*Factorial(2*n)/((2*n^2+6*n+4)*Factorial(n)^2): n in [1.. 25]]; // Vincenzo Librandi, Oct 21 2014
-
A000257 := proc(n)
option remember;
if n <=1 then
1;
else
4*(2*n-1)*procname(n-1)/(n+2) ;
end if ;
end proc: # R. J. Mathar, Dec 18 2011
-
CoefficientList[Series[1 + x HypergeometricPFQ[{1, 3/2}, {4}, 8 x], {x, 0, 10}], x]
(* Second program: *)
Join[{1}, Table[3*2^(n-1) CatalanNumber[n]/(n+2), {n, 30}]] (* Harvey P. Dale, Dec 18 2011 *)
-
C(n)=binomial(2*n, n)/(n+1);
a(n)=if(n==0, 1, 3*2^(n-1)*C(n)/(n+2) ); \\ Joerg Arndt, May 04 2013
-
x='x+O('x^66); Vec( ((1-8*x)^(3/2) + 8*x^2 + 12*x - 1)/(32*x^2) ) \\ Joerg Arndt, May 04 2013
-
x='x; y='y; Fxy = 16*x^2*y^2 - (8*x^2+12*x-1)*y + x^2+11*x-1;
seq(N) = {
my(y0 = 1 + O('x^N), y1=0);
for (k = 1, N,
y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
if (y1 == y0, break()); y0 = y1);
Vec(y0);
};
seq(24) \\ Gheorghe Coserea, Nov 30 2016
-
a000257 = [1]
for n in range(1, 25): a000257.append((8*n-4)*a000257[-1]//(n+2))
print(a000257) # Gennady Eremin, Mar 22 2022
A002421
Expansion of (1-4*x)^(3/2) in powers of x.
Original entry on oeis.org
1, -6, 6, 4, 6, 12, 28, 72, 198, 572, 1716, 5304, 16796, 54264, 178296, 594320, 2005830, 6843420, 23571780, 81880920, 286583220, 1009864680, 3580429320, 12765008880, 45741281820, 164668614552, 595340375688, 2160865067312, 7871722745208, 28772503827312
Offset: 0
G.f. = 1 - 6*x + 6*x^2 + 4*x^3 + 6*x^4 + 12*x^5 + 28*x^6 + 72*x^7 + 198*x^8 + 572*x^9 + ...
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
Concatenation([1], List([1..40], n-> 12*Factorial(2*n-4) /( Factorial(n)*Factorial(n-2)) )) # G. C. Greubel, Jul 03 2019
-
[1,-6] cat [12*Catalan(n-2)/n: n in [2..30]]; // Vincenzo Librandi, Jun 11 2012
-
A002421 := n -> 3*4^(n-1)*GAMMA(-3/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002421(n), n=0..29); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^(3/2),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
a[n_]:= Binomial[ 3/2, n] (-4)^n; (* Michael Somos, Dec 04 2013 *)
a[n_]:= SeriesCoefficient[(1-4x)^(3/2), {x, 0, n}]; (* Michael Somos, Dec 04 2013 *)
-
{a(n) = binomial( 3/2, n) * (-4)^n}; /* Michael Somos, Dec 04 2013 */
-
{a(n) = if( n<0, 0, polcoeff( (1 - 4*x + x * O(x^n))^(3/2), n))}; /* Michael Somos, Dec 04 2013 */
-
((1-4*x)^(3/2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 03 2019
A007272
Super ballot numbers: 60*(2n)!/(n!*(n+3)!).
Original entry on oeis.org
10, 5, 6, 10, 20, 45, 110, 286, 780, 2210, 6460, 19380, 59432, 185725, 589950, 1900950, 6203100, 20470230, 68234100, 229514700, 778354200, 2659376850, 9148256364, 31667041260, 110248217720, 385868762020, 1357193576760, 4795417304552, 17015996887120, 60619488910365
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Matthew House, Table of n, a(n) for n = 0..1677
- Emily Allen and Irina Gheorghiciuc, A Weighted Interpretation for the Super Catalan Numbers, J. Int. Seq. 17 (2014) # 14.10.7.
- David Callan, A combinatorial interpretation for a super-Catalan recurrence, arXiv:math/0408117 [math.CO], 2004.
- Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194
- Ira M. Gessel and Guoce Xin, A Combinatorial Interpretation of the Numbers 6(2n)!/n!(n+2)!, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 96.
-
seq(10*(2*n)!/(n!)^2/binomial(n+3,n), n=0..26); # Zerinvary Lajos, Jun 28 2007
-
Table[60(2n)!/(n!(n+3)!), {n, 0, 30}] (* Jean-François Alcover, Jun 02 2019 *)
-
a(n)=if(n<0, 0, 60*(2*n)!/n!/(n+3)!) /* Michael Somos, Feb 19 2006 */
-
{a(n)=if(n<0, 0, n*=2; n!*polcoeff( 10*besseli(3,2*x+x*O(x^n)), n))} /* Michael Somos, Feb 19 2006 */
-
def A007272(n): return -(-4)^(3 + n)*binomial(5/2, 3 + n)/2
print([A007272(n) for n in range(30)]) # Peter Luschny, Nov 04 2021
A002422
Expansion of (1-4*x)^(5/2).
Original entry on oeis.org
1, -10, 30, -20, -10, -12, -20, -40, -90, -220, -572, -1560, -4420, -12920, -38760, -118864, -371450, -1179900, -3801900, -12406200, -40940460, -136468200, -459029400, -1556708400, -5318753700, -18296512728, -63334082520
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(5/2) )); // G. C. Greubel, Jul 03 2019
-
A002422 := n -> -(15/8)*4^n*GAMMA(n-5/2)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002422(n), n=0..26); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^{5/2},{x,0,30}],x] (* Vincenzo Librandi, Jun 11 2012 *)
-
vector(30, n, n--; (-4)^n*binomial(5/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(5/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A002423
Expansion of (1-4*x)^(7/2).
Original entry on oeis.org
1, -14, 70, -140, 70, 28, 28, 40, 70, 140, 308, 728, 1820, 4760, 12920, 36176, 104006, 305900, 917700, 2801400, 8684340, 27293640, 86843400, 279409200, 908079900, 2978502072, 9851968392, 32839894640
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(7/2) )); // G. C. Greubel, Jul 03 2019
-
A002423 := n -> (105/16)*4^n*GAMMA(-7/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002423(n), n=0..27); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4*x)^(7/2),{x,0,30}],x] (* Jean-François Alcover, Mar 21 2011 *)
Table[(4^(-1+x) Pochhammer[-(7/2),-1+x])/Pochhammer[1,-1+x],{x,30}] (* Harvey P. Dale, Jul 13 2011 *)
-
vector(30, n, n--; (-4)^n*binomial(7/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(7/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A002424
Expansion of (1-4*x)^(9/2).
Original entry on oeis.org
1, -18, 126, -420, 630, -252, -84, -72, -90, -140, -252, -504, -1092, -2520, -6120, -15504, -40698, -110124, -305900, -869400, -2521260, -7443720, -22331160, -67964400, -209556900, -653817528, -2062039896, -6567978928, -21111360840
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(9/2) )); // G. C. Greubel, Jul 03 2019
-
A002424 := n -> -(945/32)*4^n*GAMMA(-9/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002424(n),n=0..28); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^(9/2),{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
-
my(x='x+O('x^30)); Vec((1-4*x)^(9/2)) \\ Altug Alkan, Dec 14 2015
-
vector(30, n, n--; (-4)^n*binomial(9/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(9/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A135573
Array T(n,m) of super ballot numbers read along ascending antidiagonals.
Original entry on oeis.org
1, 3, 1, 10, 2, 2, 35, 5, 3, 5, 126, 14, 6, 6, 14, 462, 42, 14, 10, 14, 42, 1716, 132, 36, 20, 20, 36, 132, 6435, 429, 99, 45, 35, 45, 99, 429, 24310, 1430, 286, 110, 70, 70, 110, 286, 1430, 92378, 4862, 858, 286, 154, 126, 154, 286, 858, 4862
Offset: 0
Array with rows n >= 0 and columns m >= 0 starts:
[n\m] 0 1 2 3 4 5 6 7 8 ...
-------------------------------------------------------
[0] 1 1 2 5 14 42 132 429 1430 ... [A000108]
[1] 3 2 3 6 14 36 99 286 858 ... [A007054]
[2] 10 5 6 10 20 45 110 286 780 ... [A007272]
[3] 35 14 14 20 35 70 154 364 910 ... [A348893]
[4] 126 42 36 45 70 126 252 546 1260 ... [A348898]
[5] 462 132 99 110 154 252 462 924 1980 ... [A348899]
[6] 1716 429 286 286 364 546 924 1716 3432 ...
...
Seen as a triangle:
[0] 1;
[1] 3, 1;
[2] 10, 2, 2;
[3] 35, 5, 3, 5;
[4] 126, 14, 6, 6, 14;
[5] 462, 42, 14, 10, 14, 42;
[6] 1716, 132, 36, 20, 20, 36, 132;
[7] 6435, 429, 99, 45, 35, 45, 99, 429.
.
T(20, 100000) = 2.442634...*10^60129. Asymptotic formula: 2.442627..*10^60129.
-
T := proc(n,m) (2*n+1)!/n!*(2*m)!/m!/(m+n+1)! ; end proc:
for d from 0 to 12 do for c from 0 to d do printf("%d, ",T(d-c,c)) ; od: od:
# Alternatively, printed as rows:
A135573 := (n, m) -> (1/(2*Pi))*int(x^m*(4-x)^(n+1/2)*x^(-1/2), x=0..4):
for n from 0 to 9 do seq(A135573(n, m), m = 0..9) od; # Peter Luschny, Nov 03 2021
-
T[n_, m_] := (2*n+1)!/n!*(2*m)!/m!/(m+n+1)!; Table[T[n-m, m], {n, 0, 12}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
T[n_, m_] := 4^(m+n) Hypergeometric2F1[1/2+n, 1/2-m, 3/2+n, 1] / ((2 n + 1) Pi);
Table[T[n - m + 1, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Peter Luschny, Nov 03 2021 *)
-
def T(n, m): return (-1)^m*4^(n + 1 + m)*binomial(n + 1/2, n + 1 + m)/2
for n in range(7): print([T(n, m) for m in range(9)]) # Peter Luschny, Nov 04 2021
Showing 1-10 of 26 results.
Comments