cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A007054 Super ballot numbers: 6(2n)!/(n!(n+2)!).

Original entry on oeis.org

3, 2, 3, 6, 14, 36, 99, 286, 858, 2652, 8398, 27132, 89148, 297160, 1002915, 3421710, 11785890, 40940460, 143291610, 504932340, 1790214660, 6382504440, 22870640910, 82334307276, 297670187844, 1080432533656, 3935861372604, 14386251913656, 52749590350072
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is 2n+3. The Hankel transform of a(n+1) is n+2. The sequence a(n)-2*0^n has Hankel transform A110331(n). - Paul Barry, Jul 20 2008
Number of pairs of Dyck paths of total length 2*n with heights differing by at most 1 (Gessel/Xin, p. 2). - Joerg Arndt, Sep 01 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [6*Factorial(2*n)/(Factorial(n)*Factorial(n+2)): n in [0..30]]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    seq(3*(2*n)!/(n!)^2/binomial(n+2,n), n=0..22); # Zerinvary Lajos, Jun 28 2007
    A007054 := n -> 6*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(3+n)):
    seq(A007054(n),n=0..28); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[6(2n)!/(n!(n+2)!),{n,0,30}] (* or *) CoefficientList[Series[ (-1+Sqrt[1-4*x]+(6-4*Sqrt[1-4*x])*x)/(2*x^2),{x,0,30}],x] (* Harvey P. Dale, Oct 05 2011 *)
  • PARI
    a(n)=6*(2*n)!/(n!*(n+2)!); /* Joerg Arndt, Sep 01 2012 */
    
  • Sage
    def A007054(n): return (-4)^(2 + n)*binomial(3/2, 2 + n)/2
    print([A007054(n) for n in range(29)])  # Peter Luschny, Nov 04 2021

Formula

G.f.: c(x)*(4-c(x)), where c(x) = g.f. for Catalan numbers A000108; Convolution of Catalan numbers with negative Catalan numbers but -C(0)=-1 replaced by 3. - Wolfdieter Lang
E.g.f. in Maple notation: exp(2*x)*(4*x*(BesselI(0, 2*x)-BesselI(1, 2*x))-BesselI(1, 2*x))/x. Integral representation as n-th moment of a positive function on [0, 4], in Maple notation: a(n)=int(x^n*(4-x)^(3/2)/x^(1/2), x=0..4)/(2*Pi), n=0, 1, ... This representation is unique. - Karol A. Penson, Oct 10 2001
E.g.f.: Sum_{n>=0} a(n)*x^(2*n) = 3*BesselI(2, 2x).
a(n) = A000108(n)*6/(n+2). - Philippe Deléham, Oct 30 2007
a(n+1) = 2*(A000108(n+2) - A000108(n+1))/(n+1). - Paul Barry, Jul 20 2008
G.f.: ((6-4*sqrt(1-4*x))*x+sqrt(1-4*x)-1)/(2*x^2) - Harvey P. Dale, Oct 05 2011
a(n) = 4*A000108(n) - A000108(n+1) (Gessel/Xin, p. 2). - Joerg Arndt, Sep 01 2012
D-finite with recurrence (n+2)*a(n) +2*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Dec 03 2012
G.f.: 1/(x^2*G(0)) + 3/x - (1/2)/x^2, where G(k) = 1 + 1/(1 - 2*x*(2*k+3)/(2*x*(2*k+3) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: 3/x - 1/(2*x^2) + G(0)/(4*x^2), where G(k) = 1 + 1/(1 - 2*x*(2*k-3)/(2*x*(2*k-3) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 18 2013
0 = a(n)*(+16*a(n+1) - 14*a(n+2)) + a(n+1)*(+6*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 18 2014
A002421(n+2) = 2*a(n) for all n in Z. - Michael Somos, Sep 18 2014
a(n) = 3*(2*n)!*[x^(2*n)]hypergeometric([],[3],x^2). - Peter Luschny, Feb 01 2015
a(n) = 6*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(3+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^(2 + n)*binomial(3/2, 2 + n)/2. - Peter Luschny, Nov 04 2021
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + 20*Pi/(81*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 3/25 - 8*log(phi)/(25*sqrt(5)), where phi is the golden ratio (A001622). (End)
a(n-1) = 3*A000984(n)/((2*n-1)*(n+1)). - R. J. Mathar, Jul 12 2024

Extensions

Corrected and extended by Vincenzo Librandi, Aug 20 2011

A071724 a(n) = 3*binomial(2n, n-1)/(n+2), n > 0, with a(0)=1.

Original entry on oeis.org

1, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, 41990, 149226, 534888, 1931540, 7020405, 25662825, 94287120, 347993910, 1289624490, 4796857230, 17902146600, 67016296620, 251577050010, 946844533674, 3572042254128, 13505406670700
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

Number of standard tableaux of shape (n+1,n-1) (n>=1). - Emeric Deutsch, May 30 2004
From Gus Wiseman, Apr 12 2019: (Start)
Also the number of integer partitions (of any positive integer) such that n is the maximum number of unit steps East or South in the Young diagram starting from the upper-left square and ending in a boundary square in the lower-right quadrant. Also the number of integer partitions fitting in a triangular partition of length n but not of length n - 1. For example, the a(0) = 1 through a(4) = 9 partitions are:
() (1) (2) (3)
(11) (22)
(21) (31)
(32)
(111)
(211)
(221)
(311)
(321)
(End)
The sequence (-1)^(n+1)*a(n), for n >= 1 and +1 for n = 0, is the so-called Z-sequence of the Riordan triangle A158909. For the notion of Z- and A-sequences for Riordan arrays see the W. Lang link under A006232 with details and references. - Wolfdieter Lang, Oct 22 2019

Crossrefs

Number of times n appears in A065770.
Column sums of A325189.
Row sums of A030237.

Programs

  • Magma
    [1] cat [3*Binomial(2*n,n-1)/(n+2): n in [1..29]]; // Vincenzo Librandi, Jul 12 2017
    
  • Maple
    A071724:= n-> 3*binomial(2*n, n-1)/(n+2); 1,seq(A071724(n), n=1..30); # G. C. Greubel, Mar 17 2021
  • Mathematica
    Join[{1}, Table[3Binomial[2n, n-1]/(n+2), {n,1,30}]] (* Vincenzo Librandi, Jul 12 2017 *)
    nn=7;
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    allip=Join@@Table[IntegerPartitions[n],{n,0,nn*(nn+1)/2}];
    Table[Length[Select[allip,otbmax[#]==n&]],{n,0,nn}] (* Gus Wiseman, Apr 12 2019 *)
  • PARI
    a(n)=if(n<1,n==0,3*(2*n)!/(n+2)!/(n-1)!)
    
  • Sage
    [1]+[3*n*catalan_number(n)/(n+2) for n in (1..30)] # G. C. Greubel, Mar 17 2021

Formula

a(n) = A000245(n), n>0.
G.f.: (C(x)-1)*(1-x)/x = (1 + x^2 * C(x)^3)*C(x), where C(x) is g.f. for Catalan numbers, A000108.
G.f.: ((1-sqrt(1-4*x))/(2*x)-1)*(1-x)/x = A(x) satisfies x^2*A(x)^2 + (x-1)*(2*x-1)*A(x) + (x-1)^2 = 0.
G.f.: 1 + x*C(x)^3, where C(x) is g.f. for the Catalan numbers (A000108). Sequence without the first term is the 3-fold convolution of the Catalan sequence. - Emeric Deutsch, May 30 2004
a(n) is the n-th moment of the function defined on the segment (0, 4) of x axis: a(n) = Integral_{x=0..4} x^n*(-x^(1/2)*cos(3*arcsin((1/2)*x^(1/2)))/Pi) dx, n=0, 1... . - Karol A. Penson, Sep 29 2004
D-finite with recurrence -(n+2)*(n-1)*a(n) + 2*n*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Jul 10 2017
a(n) ~ c*2^(2*n)*n^(-3/2), where c = 3/sqrt(Pi). - Stefano Spezia, Sep 23 2022
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 14*(Pi/(3*sqrt(3)) + 1)/9.
Sum_{n>=0} (-1)^n/a(n) = 18/25 - 164*log(phi)/(75*sqrt(5)), where phi is the golden ratio (A001622). (End)

A002422 Expansion of (1-4*x)^(5/2).

Original entry on oeis.org

1, -10, 30, -20, -10, -12, -20, -40, -90, -220, -572, -1560, -4420, -12920, -38760, -118864, -371450, -1179900, -3801900, -12406200, -40940460, -136468200, -459029400, -1556708400, -5318753700, -18296512728, -63334082520
Offset: 0

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(5/2) )); // G. C. Greubel, Jul 03 2019
    
  • Maple
    A002422 := n -> -(15/8)*4^n*GAMMA(n-5/2)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002422(n), n=0..26); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1-4x)^{5/2},{x,0,30}],x] (* Vincenzo Librandi, Jun 11 2012 *)
  • PARI
    vector(30, n, n--; (-4)^n*binomial(5/2, n)) \\ G. C. Greubel, Jul 03 2019
    
  • Sage
    [(-4)^n*binomial(5/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019

Formula

a(n+3) = -2 * A007272(n).
a(n) = Sum_{m=0..n} binomial(n, m) * K_m(6), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg (abarg(AT)research.bell-labs.com).
a(n) ~ -15/8*Pi^(-1/2)*n^(-7/2)*2^(2*n)*{1 + 35/8*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
a(n) = -(15/8)*4^n*Gamma(n-5/2)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^n*binomial(5/2, n). - Peter Luschny, Oct 22 2018
D-finite with recurrence: n*a(n) +2*(-2*n+7)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 32/45 - 14*Pi/(3^5*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 2144/1875 - 28*log(phi)/(5^4*sqrt(5)), where phi is the golden ratio (A001622). (End)

A002423 Expansion of (1-4*x)^(7/2).

Original entry on oeis.org

1, -14, 70, -140, 70, 28, 28, 40, 70, 140, 308, 728, 1820, 4760, 12920, 36176, 104006, 305900, 917700, 2801400, 8684340, 27293640, 86843400, 279409200, 908079900, 2978502072, 9851968392, 32839894640
Offset: 0

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(7/2) )); // G. C. Greubel, Jul 03 2019
    
  • Maple
    A002423 := n -> (105/16)*4^n*GAMMA(-7/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002423(n), n=0..27); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1-4*x)^(7/2),{x,0,30}],x] (* Jean-François Alcover, Mar 21 2011 *)
    Table[(4^(-1+x) Pochhammer[-(7/2),-1+x])/Pochhammer[1,-1+x],{x,30}] (* Harvey P. Dale, Jul 13 2011 *)
  • PARI
    vector(30, n, n--; (-4)^n*binomial(7/2, n)) \\ G. C. Greubel, Jul 03 2019
    
  • Sage
    [(-4)^n*binomial(7/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019

Formula

a(n) = Sum_{m=0..n} binomial(n, m) * K_m(8), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg (abarg(AT)research.bell-labs.com)
a(n) ~ 105*4^(n-2)/(sqrt(Pi)*n^(9/2)). - Vaclav Kotesovec, Jul 28 2013
a(n) = (105/16)*4^n*Gamma(-7/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^n * binomial(7/2, n). - G. C. Greubel, Jul 03 2019
D-finite with recurrence: n*a(n) +2*(-2*n+9)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 36/35 + 2*Pi/(3^4*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 23932/21875 - 36*log(phi)/(5^5*sqrt(5)), where phi is the golden ratio (A001622). (End)

A002424 Expansion of (1-4*x)^(9/2).

Original entry on oeis.org

1, -18, 126, -420, 630, -252, -84, -72, -90, -140, -252, -504, -1092, -2520, -6120, -15504, -40698, -110124, -305900, -869400, -2521260, -7443720, -22331160, -67964400, -209556900, -653817528, -2062039896, -6567978928, -21111360840
Offset: 0

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(9/2) )); // G. C. Greubel, Jul 03 2019
    
  • Maple
    A002424 := n -> -(945/32)*4^n*GAMMA(-9/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002424(n),n=0..28); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1-4x)^(9/2),{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-4*x)^(9/2)) \\ Altug Alkan, Dec 14 2015
    
  • PARI
    vector(30, n, n--; (-4)^n*binomial(9/2, n)) \\ G. C. Greubel, Jul 03 2019
    
  • Sage
    [(-4)^n*binomial(9/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019

Formula

a(n) = Sum_{m=0..n} binomial(n, m) * K_m(10), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg, abarg(AT)research.bell-labs.com.
a(n) = -(945/32)*4^n*Gamma(-9/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^n*binomial(9/2, n). - G. C. Greubel, Jul 03 2019
D-finite with recurrence: n*a(n) +2*(-2*n+11)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 32/35 - 22*Pi/(3^7*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 1050752/984375 - 44*log(phi)/(5^6*sqrt(5)), where phi is the golden ratio (A001622). (End)

A071721 Expansion of (1+x^2*C^2)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 2, 6, 18, 56, 180, 594, 2002, 6864, 23868, 83980, 298452, 1069776, 3863080, 14040810, 51325650, 188574240, 695987820, 2579248980, 9593714460, 35804293200, 134032593240, 503154100020, 1893689067348, 7144084508256
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

a(n) = A138156(n) - 4*A138156(n-1). - Alzhekeyev Ascar M, Jul 19 2011
Apparently, for n>=1, the sum of the heights of the first and last peaks in all Dyck n-paths (in paths with one peak the height counts as both first and last). - David Scambler, Oct 05 2012
For n>=1, a(n) is the total number of nonempty subtrees over all binary trees having n+1 internal nodes. Here, a binary tree is a full (each node has two or zero children), rooted, plane (ordered), unlabeled tree. An empty subtree is a tree attached to the root that consists only of an external node. a(n) = 2*A002057(n-2) + A068875(n). - Geoffrey Critzer, Sep 16 2013
From Colin Defant, Sep 15 2018: (Start)
a(n) is the number of permutations pi of [n+1] such that s(pi) avoids the patterns 132, 231, 312, and 321, where s denotes West's stack-sorting map.
a(n) is the number of permutations on [n+1] that avoid the patterns 1342, 2341, 3142, 3241, 3412, and 3421. (End)

Examples

			G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 56*x^4 + 180*x^5 + 594*x^6 + 2002*x^7 + ... - _Michael Somos_, Apr 22 2022
		

Crossrefs

Row sums of triangles A319251, A319252.
gf=(1+x^2*C^2)*C^m: A000782 (m=1), this sequence (m=2), A071722 (m=3), A071723 (m=4).

Programs

  • Maple
    a := n -> `if`(n=0, 1, 6*binomial(2*n, n-1)/(n+2));
    seq(a(n), n=0..24); # Peter Luschny, Jun 28 2018
  • Mathematica
    Join[{1},Table[6n CatalanNumber[n]/(n+2),{n,30}]] (* Harvey P. Dale, Jun 05 2012 *)
    nn=20;t=(1-(1-4x)^(1/2))/(2x);CoefficientList[Series[D[1+x (y t -y+1)^2,y]/.y->1,{x,0,nn}],x] (* Geoffrey Critzer, Sep 16 2013 *)
  • PARI
    {a(n) = if(n<1, n==0, 6*n*(2*n)!/(n!*(n + 1)!*(n + 2)))}; /* Michael Somos, Apr 22 2022 */
  • Sage
    a = lambda n: n*(n+1)*hypergeometric([1-n, 2-n], [4], 1) if n>0 else 1
    [simplify(a(n)) for n in range(25)] # Peter Luschny, Nov 19 2014
    

Formula

a(n) = 6n * (2n)! / [(n+2)n!(n+1)! ], n>0. In terms of Catalan numbers (A000108), a(n) = 6n*Cat(n)/(n+2), n>0. - Ralf Stephan, Mar 11 2004
a(n) = n*(n+1)*hypergeom([1-n, 2-n], [4], 1) for n>=1. - Peter Luschny, Nov 19 2014
D-finite with recurrence -(n+2)*(n-1)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 18 2017
a(n) = 2*Cat(n+1) - 2*Cat(n) = 2*A000245(n) for n>=1. - Colin Defant, Jun 27 2018
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 23/18 + 7*Pi/(27*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 43/50 - 82*sqrt(5)*log(phi)/375, where phi is the golden ratio (A001622). (End)
From Michael Somos, Apr 22 2022: (Start)
G.f.: (1 - 3*x + x^2 - (1 - x) * sqrt(1 - 4*x))/x^2.
G.f.: (2 - 2*x + x^2)/(1 - 3*x + x^2 + (1 - x)*sqrt(1 - 4*x)).
G.f.: 1 + 1/((1 - x)/(1 - sqrt(1 - 4*x)) - 1/2).
a(n) = b(n+1) - b(n) for all n in Z if b(0) = 2, b(-1) = -1, a(0) = 0, a(-1) = 3, a(-2) = -1 where b = A068875.
0 = a(n)*(+16*a(n+1) -58*a(n+2) +18*a(n+3)) +a(n+1)*(+18*a(n+1) +15*a(n+2) -13*a(n+3)) +a(n+2)*(+3*a(n+2) +a(n+3)) for all n in Z if a(0) = 0, a(-1) = 3, a(-2) = -1. (End)

A020923 Expansion of (1-4*x)^(11/2).

Original entry on oeis.org

1, -22, 198, -924, 2310, -2772, 924, 264, 198, 220, 308, 504, 924, 1848, 3960, 8976, 21318, 52668, 134596, 354200, 956340, 2641320, 7443720, 21360240, 62300700, 184410072, 553230216, 1680180656, 5160554872, 16015515120, 50181947376, 158639704608, 505664058438
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A002423 := n -> (10395/64)*4^n*GAMMA(-11/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002423(n),n=0..28); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1 - 4*x)^(11/2), {x,0,50}], x] (* G. C. Greubel, Feb 15 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-4*x)^(11/2)) \\ G. C. Greubel, Feb 15 2017

Formula

a(n) = (10395/64)*4^n*Gamma(-11/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
D-finite with recurrence: n*a(n) +2*(-2*n+13)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(11/2, n).
Sum_{n>=0} 1/a(n) = 1124/1155 + 26*Pi/(3^8*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 56972276/54140625 - 52*log(phi)/(5^7*sqrt(5)), where phi is the golden ratio (A001622). (End)

A020925 Expansion of (1-4*x)^(13/2).

Original entry on oeis.org

1, -26, 286, -1716, 6006, -12012, 12012, -3432, -858, -572, -572, -728, -1092, -1848, -3432, -6864, -14586, -32604, -76076, -184184, -460460, -1184040, -3121560, -8414640, -23140260, -64792728, -184410072, -532740208, -1560167752, -4626704368, -13880113104
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f := k -> -135135*(2*k)!/((2*k-1)*(2*k-3)*(2*k-5)*(2*k-7)*(2*k-9)*(2*k-11)*(-13+2*k)*(k!)^2):
    map(f, [$0..30]); # Robert Israel, Jul 02 2018
  • Mathematica
    CoefficientList[Series[(1-4*x)^(13/2), {x, 0, 50}], x] (* Amiram Eldar, Mar 25 2022 *)
  • PARI
    my(x = 'x + O('x^40)); Vec((1-4*x)^(13/2)) \\ Michel Marcus, Jul 02 2018

Formula

a(n) = (-2)^n * Product_{i=0..n-1} (13-2*i) / n! for n>0. - R. J. Mathar, Feb 19 2008
D-finite with recurrence: n*a(n) - 2*(2*n-13)*a(n-1) = 0 for n>0. - Bruno Berselli, Jul 02 2018
a(n) ~ -135135 * 2^(2*n - 7) / (sqrt(Pi) * n^(15/2)). - Vaclav Kotesovec, Jul 02 2018
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(13/2, n).
Sum_{n>=0} 1/a(n) = 960/1001 - 10*Pi/(3^8*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 244659776/234609375 - 12*log(phi)/(5^7*sqrt(5)), where phi is the golden ratio (A001622). (End)

A382536 Expansion of 1/(1 - x*(1 + 4*x)^(3/2)).

Original entry on oeis.org

1, 1, 7, 19, 63, 221, 679, 2365, 7499, 25351, 82043, 274031, 892263, 2972127, 9686899, 32261819, 105124711, 350277365, 1140610399, 3803874525, 12372800403, 41319077557, 134176480535, 448958154449, 1454582791283, 4879992151217, 15762304059447, 53067612190093
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Comments

a(62) is negative.

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x*(1 + 4*x)^(3/2)); seq := [ Coefficient(f, n) : n in [0..30] ]; seq; // Vincenzo Librandi, Apr 01 2025
  • Mathematica
    Table[Sum[4^(n-k)*Binomial[3*k/2,n-k],{k,0,n}],{n,0,35}] (* Vincenzo Librandi, Apr 01 2025 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(3*k/2, n-k));
    

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * binomial(3*k/2,n-k).
D-finite with recurrence (-n+1)*a(n) +2*(-2*n+7)*a(n-1) +(n-1)*a(n-2) +2*(8*n-13)*a(n-3) +24*(4*n-9)*a(n-4) +32*(8*n-23)*a(n-5) +128*(2*n-7)*a(n-6)=0. - R. J. Mathar, Apr 02 2025
a(n) ~ 3 * (-1)^(n+1) * 2^(2*n-4) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Apr 13 2025

A020927 Expansion of (1-4*x)^(15/2).

Original entry on oeis.org

1, -30, 390, -2860, 12870, -36036, 60060, -51480, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 25740, 54340, 120120, 276276, 657800, 1614600, 4071600, 10518300, 27768312, 74760840, 204900080, 570793080, 1613966640, 4626704368, 13432367520
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4x)^(15/2),{x,0,30}],x] (* Harvey P. Dale, Oct 03 2012 *)

Formula

D-finite with recurrence: n*a(n) +2*(-2*n+17)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(15/2, n).
Sum_{n>=0} 1/a(n) = 972/1001 + 34*Pi/(3^10*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 18235778692/17595703125 - 68*log(phi)/(5^9*sqrt(5)), where phi is the golden ratio (A001622). (End)
Showing 1-10 of 21 results. Next