cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A002421 Expansion of (1-4*x)^(3/2) in powers of x.

Original entry on oeis.org

1, -6, 6, 4, 6, 12, 28, 72, 198, 572, 1716, 5304, 16796, 54264, 178296, 594320, 2005830, 6843420, 23571780, 81880920, 286583220, 1009864680, 3580429320, 12765008880, 45741281820, 164668614552, 595340375688, 2160865067312, 7871722745208, 28772503827312
Offset: 0

Views

Author

Keywords

Comments

Terms that are not divisible by 12 have indices in A019469. - Ralf Stephan, Aug 26 2004
From Ralf Steiner, Apr 06 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums such as:
Sum_{k>=0} a(k)^2/8^k = 2F1(-3/2,-3/2,1,2).
Sum_{k>=0} a(k) / 2^k = -i. (End)

Examples

			G.f. = 1 - 6*x + 6*x^2 + 4*x^3 + 6*x^4 + 12*x^5 + 28*x^6 + 72*x^7 + 198*x^8 + 572*x^9 + ...
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..40], n-> 12*Factorial(2*n-4) /( Factorial(n)*Factorial(n-2)) )) # G. C. Greubel, Jul 03 2019
  • Magma
    [1,-6] cat [12*Catalan(n-2)/n: n in [2..30]]; // Vincenzo Librandi, Jun 11 2012
    
  • Maple
    A002421 := n -> 3*4^(n-1)*GAMMA(-3/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002421(n), n=0..29); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1-4x)^(3/2),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
    a[n_]:= Binomial[ 3/2, n] (-4)^n; (* Michael Somos, Dec 04 2013 *)
    a[n_]:= SeriesCoefficient[(1-4x)^(3/2), {x, 0, n}]; (* Michael Somos, Dec 04 2013 *)
  • PARI
    {a(n) = binomial( 3/2, n) * (-4)^n}; /* Michael Somos, Dec 04 2013 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 - 4*x + x * O(x^n))^(3/2), n))}; /* Michael Somos, Dec 04 2013 */
    
  • Sage
    ((1-4*x)^(3/2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 03 2019
    

Formula

a(n) = Sum_{m=0..n} binomial(n, m)*K_m(4), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg (abarg(AT)research.bell-labs.com)
a(n) ~ (3/4)*Pi^(-1/2)*n^(-5/2)*2^(2*n)*(1 + 15/8*n^-1 + ...). - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
From Ralf Stephan, Mar 11 2004: (Start)
a(n) = 12*(2*n-4)! /(n!*(n-2)!), n > 1.
a(n) = 12*Cat(n-2)/n = 2(Cat(n-1) - 4*Cat(n-2)), in terms of Catalan numbers (A000108).
Terms that are not divisible by 12 have indices in A019469. (End)
Let rho(x)=(1/Pi)*(x*(4-x))^(3/2), then for n >= 4, a(n) = Integral_{x=0..4} (x^(n-4) *rho(x)) dx. - Groux Roland, Mar 16 2011
G.f.: (1-4*x)^(3/2) = 1 - 6*x + 12*x^2/(G(0) + 2*x); G(k) = (4*x+1)*k-2*x+2-2*x*(k+2)*(2*k+1)/G(k+1); for -1/4 <= x < 1/4, otherwise G(0) = 2*x; (continued fraction). - Sergei N. Gladkovskii, Dec 05 2011
G.f.: 1/G(0) where G(k) = 1 + 4*x*(2*k+1)/(1 - 1/(1 + (2*k+2)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 18 2012
G.f.: G(0)/2, where G(k) = 2 + 2*x*(2*k-3)*G(k+1)/(k+1). - Sergei N. Gladkovskii, Jun 06 2013 [Edited by Michael Somos, Dec 04 2013]
0 = a(n+2) * (a(n+1) - 14*a(n)) + a(n+1) * (6*a(n+1) + 16*a(n)) for all n in Z. - Michael Somos, Dec 04 2013
A232546(n) = 3^n * a(n). - Michael Somos, Dec 04 2013
G.f.: hypergeometric1F0(-3/2;;4*x). - R. J. Mathar, Aug 09 2015
a(n) = 3*4^(n-1)*Gamma(-3/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
From Ralf Steiner, Apr 06 2017: (Start)
Sum_{k>=0} a(k)/4^k = 0.
Sum_{k>=0} a(k)^2/16^k = 32/(3*Pi).
Sum_{k>=0} a(k)^2*(k/8)/16^k = 1/Pi.
Sum_{k>=0} a(k)^2*(-k/24+1/8)/16^k = 1/Pi.
Sum_{k>=0} a(k-1)^2*(k-1/4)/16^k = 1/Pi.
Sum_{k>=0} a(k-1)^2*(2k-2)/16^k = 1/Pi.(End)
D-finite with recurrence: n*a(n) +2*(-2*n+5)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 4/3 + 10*Pi/(81*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 92/75 - 4*sqrt(5)*log(phi)/125, where phi is the golden ratio (A001622). (End)

A007272 Super ballot numbers: 60*(2n)!/(n!*(n+3)!).

Original entry on oeis.org

10, 5, 6, 10, 20, 45, 110, 286, 780, 2210, 6460, 19380, 59432, 185725, 589950, 1900950, 6203100, 20470230, 68234100, 229514700, 778354200, 2659376850, 9148256364, 31667041260, 110248217720, 385868762020, 1357193576760, 4795417304552, 17015996887120, 60619488910365
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 2 of the array A135573.

Programs

  • Maple
    seq(10*(2*n)!/(n!)^2/binomial(n+3,n), n=0..26); # Zerinvary Lajos, Jun 28 2007
  • Mathematica
    Table[60(2n)!/(n!(n+3)!), {n, 0, 30}] (* Jean-François Alcover, Jun 02 2019 *)
  • PARI
    a(n)=if(n<0, 0, 60*(2*n)!/n!/(n+3)!) /* Michael Somos, Feb 19 2006 */
    
  • PARI
    {a(n)=if(n<0, 0, n*=2; n!*polcoeff( 10*besseli(3,2*x+x*O(x^n)), n))} /* Michael Somos, Feb 19 2006 */
    
  • Sage
    def A007272(n): return -(-4)^(3 + n)*binomial(5/2, 3 + n)/2
    print([A007272(n) for n in range(30)])  # Peter Luschny, Nov 04 2021

Formula

G.f.: (11-32*x+9*sqrt(1-4*x))/(1-3*x+(1-x)*sqrt(1-4*x)).
E.g.f.: Sum_{n>=0} a(n)*x^(2n)/(2n)! = 60*BesselI(3, 2x)/x^3.
E.g.f.: (BesselI(0, 2*x)*(2*x+16*x^2)-BesselI(1, 2*x)*(2+6*x+16*x^2))*exp(2*x)/x^2.
Integral representation as the n-th moment of a positive function on [0, 4]: a(n) = Integral_{x=0..4} x^n*(4-x)^(5/2)/(2*Pi*x^(1/2)) dx. This representation is unique. - Karol A. Penson, Dec 04 2001
a(n) = 10*(2*n)!*[x^(2*n)](hypergeometric([],[4],x^2)). - Peter Luschny, Feb 01 2015
(n+3)*a(n) +2*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 06 2018
a(n) = -(-4)^(3+n)*binomial(5/2, 3+n)/2. - Peter Luschny, Nov 04 2021
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 4/9 + 28*Pi/(3^5*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 38/1875 - 56*log(phi)/(5^4*sqrt(5)), where phi is the golden ratio (A001622). (End)
From Peter Bala, Mar 11 2023: (Start)
a(n) = Sum_{k = 0..2} (-1)^k*4^(2-k)*binomial(n,k)*Catalan(n+k) = 16*Catalan(n) - 8*Catalan(n+1) + Catalan(n+2), where Catalan(n) = A000108(n). Thus a(n) is an integer for all n.
a(n) is odd if n = 2^k - 3, k >= 2, else a(n) is even. (End)

A002423 Expansion of (1-4*x)^(7/2).

Original entry on oeis.org

1, -14, 70, -140, 70, 28, 28, 40, 70, 140, 308, 728, 1820, 4760, 12920, 36176, 104006, 305900, 917700, 2801400, 8684340, 27293640, 86843400, 279409200, 908079900, 2978502072, 9851968392, 32839894640
Offset: 0

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(7/2) )); // G. C. Greubel, Jul 03 2019
    
  • Maple
    A002423 := n -> (105/16)*4^n*GAMMA(-7/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002423(n), n=0..27); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1-4*x)^(7/2),{x,0,30}],x] (* Jean-François Alcover, Mar 21 2011 *)
    Table[(4^(-1+x) Pochhammer[-(7/2),-1+x])/Pochhammer[1,-1+x],{x,30}] (* Harvey P. Dale, Jul 13 2011 *)
  • PARI
    vector(30, n, n--; (-4)^n*binomial(7/2, n)) \\ G. C. Greubel, Jul 03 2019
    
  • Sage
    [(-4)^n*binomial(7/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019

Formula

a(n) = Sum_{m=0..n} binomial(n, m) * K_m(8), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg (abarg(AT)research.bell-labs.com)
a(n) ~ 105*4^(n-2)/(sqrt(Pi)*n^(9/2)). - Vaclav Kotesovec, Jul 28 2013
a(n) = (105/16)*4^n*Gamma(-7/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^n * binomial(7/2, n). - G. C. Greubel, Jul 03 2019
D-finite with recurrence: n*a(n) +2*(-2*n+9)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 36/35 + 2*Pi/(3^4*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 23932/21875 - 36*log(phi)/(5^5*sqrt(5)), where phi is the golden ratio (A001622). (End)

A002424 Expansion of (1-4*x)^(9/2).

Original entry on oeis.org

1, -18, 126, -420, 630, -252, -84, -72, -90, -140, -252, -504, -1092, -2520, -6120, -15504, -40698, -110124, -305900, -869400, -2521260, -7443720, -22331160, -67964400, -209556900, -653817528, -2062039896, -6567978928, -21111360840
Offset: 0

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(9/2) )); // G. C. Greubel, Jul 03 2019
    
  • Maple
    A002424 := n -> -(945/32)*4^n*GAMMA(-9/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002424(n),n=0..28); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1-4x)^(9/2),{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-4*x)^(9/2)) \\ Altug Alkan, Dec 14 2015
    
  • PARI
    vector(30, n, n--; (-4)^n*binomial(9/2, n)) \\ G. C. Greubel, Jul 03 2019
    
  • Sage
    [(-4)^n*binomial(9/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019

Formula

a(n) = Sum_{m=0..n} binomial(n, m) * K_m(10), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg, abarg(AT)research.bell-labs.com.
a(n) = -(945/32)*4^n*Gamma(-9/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) = (-4)^n*binomial(9/2, n). - G. C. Greubel, Jul 03 2019
D-finite with recurrence: n*a(n) +2*(-2*n+11)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 32/35 - 22*Pi/(3^7*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 1050752/984375 - 44*log(phi)/(5^6*sqrt(5)), where phi is the golden ratio (A001622). (End)

A020923 Expansion of (1-4*x)^(11/2).

Original entry on oeis.org

1, -22, 198, -924, 2310, -2772, 924, 264, 198, 220, 308, 504, 924, 1848, 3960, 8976, 21318, 52668, 134596, 354200, 956340, 2641320, 7443720, 21360240, 62300700, 184410072, 553230216, 1680180656, 5160554872, 16015515120, 50181947376, 158639704608, 505664058438
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A002423 := n -> (10395/64)*4^n*GAMMA(-11/2+n)/(sqrt(Pi)*GAMMA(1+n)):
    seq(A002423(n),n=0..28); # Peter Luschny, Dec 14 2015
  • Mathematica
    CoefficientList[Series[(1 - 4*x)^(11/2), {x,0,50}], x] (* G. C. Greubel, Feb 15 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-4*x)^(11/2)) \\ G. C. Greubel, Feb 15 2017

Formula

a(n) = (10395/64)*4^n*Gamma(-11/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
D-finite with recurrence: n*a(n) +2*(-2*n+13)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(11/2, n).
Sum_{n>=0} 1/a(n) = 1124/1155 + 26*Pi/(3^8*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 56972276/54140625 - 52*log(phi)/(5^7*sqrt(5)), where phi is the golden ratio (A001622). (End)

A020925 Expansion of (1-4*x)^(13/2).

Original entry on oeis.org

1, -26, 286, -1716, 6006, -12012, 12012, -3432, -858, -572, -572, -728, -1092, -1848, -3432, -6864, -14586, -32604, -76076, -184184, -460460, -1184040, -3121560, -8414640, -23140260, -64792728, -184410072, -532740208, -1560167752, -4626704368, -13880113104
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    f := k -> -135135*(2*k)!/((2*k-1)*(2*k-3)*(2*k-5)*(2*k-7)*(2*k-9)*(2*k-11)*(-13+2*k)*(k!)^2):
    map(f, [$0..30]); # Robert Israel, Jul 02 2018
  • Mathematica
    CoefficientList[Series[(1-4*x)^(13/2), {x, 0, 50}], x] (* Amiram Eldar, Mar 25 2022 *)
  • PARI
    my(x = 'x + O('x^40)); Vec((1-4*x)^(13/2)) \\ Michel Marcus, Jul 02 2018

Formula

a(n) = (-2)^n * Product_{i=0..n-1} (13-2*i) / n! for n>0. - R. J. Mathar, Feb 19 2008
D-finite with recurrence: n*a(n) - 2*(2*n-13)*a(n-1) = 0 for n>0. - Bruno Berselli, Jul 02 2018
a(n) ~ -135135 * 2^(2*n - 7) / (sqrt(Pi) * n^(15/2)). - Vaclav Kotesovec, Jul 02 2018
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(13/2, n).
Sum_{n>=0} 1/a(n) = 960/1001 - 10*Pi/(3^8*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 244659776/234609375 - 12*log(phi)/(5^7*sqrt(5)), where phi is the golden ratio (A001622). (End)

A020927 Expansion of (1-4*x)^(15/2).

Original entry on oeis.org

1, -30, 390, -2860, 12870, -36036, 60060, -51480, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 25740, 54340, 120120, 276276, 657800, 1614600, 4071600, 10518300, 27768312, 74760840, 204900080, 570793080, 1613966640, 4626704368, 13432367520
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4x)^(15/2),{x,0,30}],x] (* Harvey P. Dale, Oct 03 2012 *)

Formula

D-finite with recurrence: n*a(n) +2*(-2*n+17)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(15/2, n).
Sum_{n>=0} 1/a(n) = 972/1001 + 34*Pi/(3^10*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 18235778692/17595703125 - 68*log(phi)/(5^9*sqrt(5)), where phi is the golden ratio (A001622). (End)

A020929 Expansion of (1-4*x)^(17/2).

Original entry on oeis.org

1, -34, 510, -4420, 24310, -87516, 204204, -291720, 218790, -48620, -9724, -5304, -4420, -4760, -6120, -8976, -14586, -25740, -48620, -97240, -204204, -447304, -1016600, -2386800, -5768100, -14304888, -36312408, -94143280, -248807240, -669205680, -1829162192
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 4 x)^(17/2), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 18 2020 *)

Formula

D-finite with recurrence: n*a(n) +2*(-2*n+19)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(17/2, n).
Sum_{n>=0} 1/a(n) = 49600/51051 - 38*Pi/(3^11*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 1542987607648/1495634765625 - 76*log(phi)/(5^10*sqrt(5)), where phi is the golden ratio (A001622). (End)

A382537 Expansion of 1/(1 - x*(1 + 4*x)^(5/2)).

Original entry on oeis.org

1, 1, 11, 51, 211, 1061, 4923, 22765, 107687, 502479, 2352231, 11022911, 51590795, 241559783, 1131156175, 5295875131, 24797055115, 116104311885, 543622665219, 2545347081565, 11917847333151, 55801588711565, 261274518155435, 1223337818786305, 5727913381451455
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x*(1 + 4*x)^(5/2)); seq := [ Coefficient(f, n) : n in [0..30] ];seq; // Vincenzo Librandi, Apr 02 2025
  • Mathematica
    Table[Sum[4^(n-k)*Binomial[5*k/2,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Apr 02 2025 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(5*k/2, n-k));
    

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * binomial(5*k/2,n-k).

A020931 Expansion of (1-4*x)^(19/2).

Original entry on oeis.org

1, -38, 646, -6460, 41990, -184756, 554268, -1108536, 1385670, -923780, 184756, 33592, 16796, 12920, 12920, 15504, 21318, 32604, 54340, 97240, 184756, 369512, 772616, 1679600, 3779100, 8767512, 20907144, 51106352, 127765880, 326023280, 847660528, 2242198816
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4x)^(19/2),{x,0,30}],x] (* Harvey P. Dale, Jul 03 2013 *)

Formula

D-finite with recurrence: n*a(n) +2*(-2*n+21)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(19/2, n).
Sum_{n>=0} 1/a(n) = 45052/46189 + 14*Pi/(3^11*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 6955761045148/6765966796875 - 84*log(phi)/(5^11*sqrt(5)), where phi is the golden ratio (A001622). (End)
Showing 1-10 of 13 results. Next