A007054
Super ballot numbers: 6(2n)!/(n!(n+2)!).
Original entry on oeis.org
3, 2, 3, 6, 14, 36, 99, 286, 858, 2652, 8398, 27132, 89148, 297160, 1002915, 3421710, 11785890, 40940460, 143291610, 504932340, 1790214660, 6382504440, 22870640910, 82334307276, 297670187844, 1080432533656, 3935861372604, 14386251913656, 52749590350072
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Emily Allen and Irina Gheorghiciuc, A Weighted Interpretation for the Super Catalan Numbers, J. Int. Seq. 17 (2014) # 14.10.7.
- David Callan, A combinatorial interpretation for a super-Catalan recurrence, arXiv:math/0408117 [math.CO], 2004.
- David Callan, A Combinatorial Interpretation for a Super-Catalan Recurrence, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.8.
- David Callan, A variant of Touchard's Catalan number identity, arXiv preprint arXiv:1204.5704 [math.CO], 2012. - From _N. J. A. Sloane_, Oct 10 2012
- Ira M. Gessel, Letter to N. J. A. Sloane, Jul. 1992
- Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194
- Ira M. Gessel, Rational Functions With Nonnegative Integer Coefficients, 50th Séminaire Lotharingien de Combinatoire, 2003.
- Ira M. Gessel and Guoce Xin, A Combinatorial Interpretation of the Numbers 6(2n)!/n!(n+2)!, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3.
- Ira M. Gessel and Guoce Xin, A Combinatorial Interpretation of The Numbers 6(2n)! /n! (n+2)!, arXiv:math/0401300v2 [math.CO], 2004.
- Nicholas Pippenger and Kristin Schleich, Topological characteristics of random triangulated surfaces (section 7), Random Structures Algorithms 28 (2006) 247-288; arXiv:gr-qc/0306049, 2003.
- G. Schaeffer, A combinatorial interpretation of super-Catalan numbers of order two, (2001).
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 96.
-
[6*Factorial(2*n)/(Factorial(n)*Factorial(n+2)): n in [0..30]]; // Vincenzo Librandi, Aug 20 2011
-
seq(3*(2*n)!/(n!)^2/binomial(n+2,n), n=0..22); # Zerinvary Lajos, Jun 28 2007
A007054 := n -> 6*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(3+n)):
seq(A007054(n),n=0..28); # Peter Luschny, Dec 14 2015
-
Table[6(2n)!/(n!(n+2)!),{n,0,30}] (* or *) CoefficientList[Series[ (-1+Sqrt[1-4*x]+(6-4*Sqrt[1-4*x])*x)/(2*x^2),{x,0,30}],x] (* Harvey P. Dale, Oct 05 2011 *)
-
a(n)=6*(2*n)!/(n!*(n+2)!); /* Joerg Arndt, Sep 01 2012 */
-
def A007054(n): return (-4)^(2 + n)*binomial(3/2, 2 + n)/2
print([A007054(n) for n in range(29)]) # Peter Luschny, Nov 04 2021
A002422
Expansion of (1-4*x)^(5/2).
Original entry on oeis.org
1, -10, 30, -20, -10, -12, -20, -40, -90, -220, -572, -1560, -4420, -12920, -38760, -118864, -371450, -1179900, -3801900, -12406200, -40940460, -136468200, -459029400, -1556708400, -5318753700, -18296512728, -63334082520
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(5/2) )); // G. C. Greubel, Jul 03 2019
-
A002422 := n -> -(15/8)*4^n*GAMMA(n-5/2)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002422(n), n=0..26); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^{5/2},{x,0,30}],x] (* Vincenzo Librandi, Jun 11 2012 *)
-
vector(30, n, n--; (-4)^n*binomial(5/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(5/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A002423
Expansion of (1-4*x)^(7/2).
Original entry on oeis.org
1, -14, 70, -140, 70, 28, 28, 40, 70, 140, 308, 728, 1820, 4760, 12920, 36176, 104006, 305900, 917700, 2801400, 8684340, 27293640, 86843400, 279409200, 908079900, 2978502072, 9851968392, 32839894640
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(7/2) )); // G. C. Greubel, Jul 03 2019
-
A002423 := n -> (105/16)*4^n*GAMMA(-7/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002423(n), n=0..27); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4*x)^(7/2),{x,0,30}],x] (* Jean-François Alcover, Mar 21 2011 *)
Table[(4^(-1+x) Pochhammer[-(7/2),-1+x])/Pochhammer[1,-1+x],{x,30}] (* Harvey P. Dale, Jul 13 2011 *)
-
vector(30, n, n--; (-4)^n*binomial(7/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(7/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A002424
Expansion of (1-4*x)^(9/2).
Original entry on oeis.org
1, -18, 126, -420, 630, -252, -84, -72, -90, -140, -252, -504, -1092, -2520, -6120, -15504, -40698, -110124, -305900, -869400, -2521260, -7443720, -22331160, -67964400, -209556900, -653817528, -2062039896, -6567978928, -21111360840
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(9/2) )); // G. C. Greubel, Jul 03 2019
-
A002424 := n -> -(945/32)*4^n*GAMMA(-9/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002424(n),n=0..28); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^(9/2),{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
-
my(x='x+O('x^30)); Vec((1-4*x)^(9/2)) \\ Altug Alkan, Dec 14 2015
-
vector(30, n, n--; (-4)^n*binomial(9/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(9/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A135573
Array T(n,m) of super ballot numbers read along ascending antidiagonals.
Original entry on oeis.org
1, 3, 1, 10, 2, 2, 35, 5, 3, 5, 126, 14, 6, 6, 14, 462, 42, 14, 10, 14, 42, 1716, 132, 36, 20, 20, 36, 132, 6435, 429, 99, 45, 35, 45, 99, 429, 24310, 1430, 286, 110, 70, 70, 110, 286, 1430, 92378, 4862, 858, 286, 154, 126, 154, 286, 858, 4862
Offset: 0
Array with rows n >= 0 and columns m >= 0 starts:
[n\m] 0 1 2 3 4 5 6 7 8 ...
-------------------------------------------------------
[0] 1 1 2 5 14 42 132 429 1430 ... [A000108]
[1] 3 2 3 6 14 36 99 286 858 ... [A007054]
[2] 10 5 6 10 20 45 110 286 780 ... [A007272]
[3] 35 14 14 20 35 70 154 364 910 ... [A348893]
[4] 126 42 36 45 70 126 252 546 1260 ... [A348898]
[5] 462 132 99 110 154 252 462 924 1980 ... [A348899]
[6] 1716 429 286 286 364 546 924 1716 3432 ...
...
Seen as a triangle:
[0] 1;
[1] 3, 1;
[2] 10, 2, 2;
[3] 35, 5, 3, 5;
[4] 126, 14, 6, 6, 14;
[5] 462, 42, 14, 10, 14, 42;
[6] 1716, 132, 36, 20, 20, 36, 132;
[7] 6435, 429, 99, 45, 35, 45, 99, 429.
.
T(20, 100000) = 2.442634...*10^60129. Asymptotic formula: 2.442627..*10^60129.
-
T := proc(n,m) (2*n+1)!/n!*(2*m)!/m!/(m+n+1)! ; end proc:
for d from 0 to 12 do for c from 0 to d do printf("%d, ",T(d-c,c)) ; od: od:
# Alternatively, printed as rows:
A135573 := (n, m) -> (1/(2*Pi))*int(x^m*(4-x)^(n+1/2)*x^(-1/2), x=0..4):
for n from 0 to 9 do seq(A135573(n, m), m = 0..9) od; # Peter Luschny, Nov 03 2021
-
T[n_, m_] := (2*n+1)!/n!*(2*m)!/m!/(m+n+1)!; Table[T[n-m, m], {n, 0, 12}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
T[n_, m_] := 4^(m+n) Hypergeometric2F1[1/2+n, 1/2-m, 3/2+n, 1] / ((2 n + 1) Pi);
Table[T[n - m + 1, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Peter Luschny, Nov 03 2021 *)
-
def T(n, m): return (-1)^m*4^(n + 1 + m)*binomial(n + 1/2, n + 1 + m)/2
for n in range(7): print([T(n, m) for m in range(9)]) # Peter Luschny, Nov 04 2021
A348893
a(n) = 840*(2*n)!/((n + 4)!*n!).
Original entry on oeis.org
35, 14, 14, 20, 35, 70, 154, 364, 910, 2380, 6460, 18088, 52003, 152950, 458850, 1400700, 4342170, 13646820, 43421700, 139704600, 454039950, 1489251036, 4925984196, 16419947320, 55124108860, 186281471320, 633357002488, 2165672331088, 7444498638115, 25717358931670, 89254363351090
Offset: 0
-
seq(840*(2*n)!/((n + 4)!*n!),n=0..30)
-
a[n_] := 4^(n + 4) Hypergeometric2F1[9/2, 1/2 - n, 11/2, 1] / (9 Pi);
Table[a[n], {n, 0, 30}] (* Peter Luschny, Nov 03 2021 *)
-
a(n)=35*binomial(2*n,n)/binomial(n+4,4) \\ Charles R Greathouse IV, Oct 23 2023
-
def A348893(n): return (-4)^(4 + n)*binomial(7/2, 4 + n)/2
print([A348893(n) for n in range(31)]) # Peter Luschny, Nov 04 2021
A361030
a(n) = 20160*(3*n)!/(n!*(n+3)!^2).
Original entry on oeis.org
560, 210, 504, 2352, 15840, 135135, 1361360, 15519504, 194699232, 2636552100, 38003792400, 577037174400, 9155656500480, 150853746558690, 2568167588473200, 44990491457326800, 808333317429976800, 14853124707775823700, 278470827854627007600, 5316261259042879236000
Offset: 0
A361038
a(n) = 1680 * (3*n)!/((2*n)!*(n+3)!).
Original entry on oeis.org
280, 210, 420, 1176, 3960, 15015, 61880, 271320, 1248072, 5965050, 29414700, 148874400, 770263200, 4061212722, 21765976680, 118336861720, 651555929640, 3627981880950, 20405547069180, 115815267149400, 662742214356600
Offset: 0
A361039
a(n) = 55440 * (3*n)!/((2*n)!*(n+4)!).
Original entry on oeis.org
2310, 1386, 2310, 5544, 16335, 55055, 204204, 813960, 3432198, 15142050, 69334650, 327523680, 1588667850, 7883530578, 39904290580, 205532444040, 1075067283906, 5701114384350, 30608320603770, 166169731127400, 911270544740325
Offset: 0
A361035
a(n) = 9979200 * (4*n)!/(n!*(n+3)!^3).
Original entry on oeis.org
46200, 17325, 116424, 2134440, 67953600, 3086579925, 179961581800, 12633303042360, 1023952465972800, 93080123469333000, 9292590788015304000, 1003030870975774344000, 115656146295979953692160, 14112534648127632044761125, 1808633485822731984665865000
Offset: 0
Showing 1-10 of 17 results.
Comments