A002421
Expansion of (1-4*x)^(3/2) in powers of x.
Original entry on oeis.org
1, -6, 6, 4, 6, 12, 28, 72, 198, 572, 1716, 5304, 16796, 54264, 178296, 594320, 2005830, 6843420, 23571780, 81880920, 286583220, 1009864680, 3580429320, 12765008880, 45741281820, 164668614552, 595340375688, 2160865067312, 7871722745208, 28772503827312
Offset: 0
G.f. = 1 - 6*x + 6*x^2 + 4*x^3 + 6*x^4 + 12*x^5 + 28*x^6 + 72*x^7 + 198*x^8 + 572*x^9 + ...
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
Concatenation([1], List([1..40], n-> 12*Factorial(2*n-4) /( Factorial(n)*Factorial(n-2)) )) # G. C. Greubel, Jul 03 2019
-
[1,-6] cat [12*Catalan(n-2)/n: n in [2..30]]; // Vincenzo Librandi, Jun 11 2012
-
A002421 := n -> 3*4^(n-1)*GAMMA(-3/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002421(n), n=0..29); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^(3/2),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
a[n_]:= Binomial[ 3/2, n] (-4)^n; (* Michael Somos, Dec 04 2013 *)
a[n_]:= SeriesCoefficient[(1-4x)^(3/2), {x, 0, n}]; (* Michael Somos, Dec 04 2013 *)
-
{a(n) = binomial( 3/2, n) * (-4)^n}; /* Michael Somos, Dec 04 2013 */
-
{a(n) = if( n<0, 0, polcoeff( (1 - 4*x + x * O(x^n))^(3/2), n))}; /* Michael Somos, Dec 04 2013 */
-
((1-4*x)^(3/2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 03 2019
A002422
Expansion of (1-4*x)^(5/2).
Original entry on oeis.org
1, -10, 30, -20, -10, -12, -20, -40, -90, -220, -572, -1560, -4420, -12920, -38760, -118864, -371450, -1179900, -3801900, -12406200, -40940460, -136468200, -459029400, -1556708400, -5318753700, -18296512728, -63334082520
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(5/2) )); // G. C. Greubel, Jul 03 2019
-
A002422 := n -> -(15/8)*4^n*GAMMA(n-5/2)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002422(n), n=0..26); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^{5/2},{x,0,30}],x] (* Vincenzo Librandi, Jun 11 2012 *)
-
vector(30, n, n--; (-4)^n*binomial(5/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(5/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A002424
Expansion of (1-4*x)^(9/2).
Original entry on oeis.org
1, -18, 126, -420, 630, -252, -84, -72, -90, -140, -252, -504, -1092, -2520, -6120, -15504, -40698, -110124, -305900, -869400, -2521260, -7443720, -22331160, -67964400, -209556900, -653817528, -2062039896, -6567978928, -21111360840
Offset: 0
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(9/2) )); // G. C. Greubel, Jul 03 2019
-
A002424 := n -> -(945/32)*4^n*GAMMA(-9/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002424(n),n=0..28); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1-4x)^(9/2),{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
-
my(x='x+O('x^30)); Vec((1-4*x)^(9/2)) \\ Altug Alkan, Dec 14 2015
-
vector(30, n, n--; (-4)^n*binomial(9/2, n)) \\ G. C. Greubel, Jul 03 2019
-
[(-4)^n*binomial(9/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019
A020923
Expansion of (1-4*x)^(11/2).
Original entry on oeis.org
1, -22, 198, -924, 2310, -2772, 924, 264, 198, 220, 308, 504, 924, 1848, 3960, 8976, 21318, 52668, 134596, 354200, 956340, 2641320, 7443720, 21360240, 62300700, 184410072, 553230216, 1680180656, 5160554872, 16015515120, 50181947376, 158639704608, 505664058438
Offset: 0
-
A002423 := n -> (10395/64)*4^n*GAMMA(-11/2+n)/(sqrt(Pi)*GAMMA(1+n)):
seq(A002423(n),n=0..28); # Peter Luschny, Dec 14 2015
-
CoefficientList[Series[(1 - 4*x)^(11/2), {x,0,50}], x] (* G. C. Greubel, Feb 15 2017 *)
-
my(x='x+O('x^50)); Vec((1-4*x)^(11/2)) \\ G. C. Greubel, Feb 15 2017
A020925
Expansion of (1-4*x)^(13/2).
Original entry on oeis.org
1, -26, 286, -1716, 6006, -12012, 12012, -3432, -858, -572, -572, -728, -1092, -1848, -3432, -6864, -14586, -32604, -76076, -184184, -460460, -1184040, -3121560, -8414640, -23140260, -64792728, -184410072, -532740208, -1560167752, -4626704368, -13880113104
Offset: 0
-
f := k -> -135135*(2*k)!/((2*k-1)*(2*k-3)*(2*k-5)*(2*k-7)*(2*k-9)*(2*k-11)*(-13+2*k)*(k!)^2):
map(f, [$0..30]); # Robert Israel, Jul 02 2018
-
CoefficientList[Series[(1-4*x)^(13/2), {x, 0, 50}], x] (* Amiram Eldar, Mar 25 2022 *)
-
my(x = 'x + O('x^40)); Vec((1-4*x)^(13/2)) \\ Michel Marcus, Jul 02 2018
A020927
Expansion of (1-4*x)^(15/2).
Original entry on oeis.org
1, -30, 390, -2860, 12870, -36036, 60060, -51480, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 25740, 54340, 120120, 276276, 657800, 1614600, 4071600, 10518300, 27768312, 74760840, 204900080, 570793080, 1613966640, 4626704368, 13432367520
Offset: 0
-
CoefficientList[Series[(1-4x)^(15/2),{x,0,30}],x] (* Harvey P. Dale, Oct 03 2012 *)
A020929
Expansion of (1-4*x)^(17/2).
Original entry on oeis.org
1, -34, 510, -4420, 24310, -87516, 204204, -291720, 218790, -48620, -9724, -5304, -4420, -4760, -6120, -8976, -14586, -25740, -48620, -97240, -204204, -447304, -1016600, -2386800, -5768100, -14304888, -36312408, -94143280, -248807240, -669205680, -1829162192
Offset: 0
-
CoefficientList[Series[(1 - 4 x)^(17/2), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 18 2020 *)
A382538
Expansion of 1/(1 - x*(1 + 4*x)^(7/2)).
Original entry on oeis.org
1, 1, 15, 99, 519, 3165, 19503, 115053, 688803, 4141863, 24778355, 148376447, 889216143, 5326274463, 31903872267, 191123789739, 1144894457103, 6858232252437, 41083285178247, 246102886383661, 1474237118571467, 8831178384769525, 52901735792001759
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 28); Coefficients(R!( 1/(1 - x*(1 + 4*x)^(7/2)))); // Vincenzo Librandi, May 16 2025
-
Table[Sum[4^(n-k)* Binomial[7*k/2, n-k],{k,0,n}],{n,0,28}] (* Vincenzo Librandi, May 16 2025 *)
-
a(n) = sum(k=0, n, 4^(n-k)*binomial(7*k/2, n-k));
A020931
Expansion of (1-4*x)^(19/2).
Original entry on oeis.org
1, -38, 646, -6460, 41990, -184756, 554268, -1108536, 1385670, -923780, 184756, 33592, 16796, 12920, 12920, 15504, 21318, 32604, 54340, 97240, 184756, 369512, 772616, 1679600, 3779100, 8767512, 20907144, 51106352, 127765880, 326023280, 847660528, 2242198816
Offset: 0
-
CoefficientList[Series[(1-4x)^(19/2),{x,0,30}],x] (* Harvey P. Dale, Jul 03 2013 *)
A182411
Triangle T(n,k) = (2*k)!*(2*n)!/(k!*n!*(k+n)!) with k=0..n, read by rows.
Original entry on oeis.org
1, 2, 2, 6, 4, 6, 20, 10, 12, 20, 70, 28, 28, 40, 70, 252, 84, 72, 90, 140, 252, 924, 264, 198, 220, 308, 504, 924, 3432, 858, 572, 572, 728, 1092, 1848, 3432, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 48620, 9724, 5304, 4420, 4760, 6120, 8976
Offset: 0
Triangle begins:
1;
2, 2;
6, 4, 6;
20, 10, 12, 20;
70, 28, 28, 40, 70;
252, 84, 72, 90, 140, 252;
924, 264, 198, 220, 308, 504, 924;
3432, 858, 572, 572, 728, 1092, 1848, 3432;
12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870;
48620, 9724, 5304, 4420, 4760, 6120, 8976, 14586, 25740, 48620;
...
Sum_{k=0..8} T(8,k) = 12870 + 2860 + 1716 + 1560 + 1820 + 2520 + 3960 + 6864 + 12870 = 2*A132310(7) + A000984(8) = 2*17085 + 12870 = 47040.
- Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 103.
- Alexander Borisov, Quotient singularities, integer ratios of factorials and the Riemann Hypothesis, arXiv:math/0505167 [math.NT], 2005; International Mathematics Research Notices, Vol. 2008, Article ID rnn052, page 2 (Theorem 2).
- Ira Gessel, Integer quotients of factorials and algebraic multivariable hypergeometric series, MIT Combinatorics Seminar, September 2011 (slides).
- Hans-Christian Herbig and Mateus de Jesus Gonçalves, On the numerology of trigonometric polynomials, arXiv:2311.13604 [math.HO], 2023.
- Kevin Limanta and Norman Wildberger, Super Catalan Numbers, Chromogeometry, and Fourier Summation over Finite Fields, arXiv:2108.10191 [math.CO], 2021. See Table 1 p. 2 where terms are shown as an array.
-
[Factorial(2*k)*Factorial(2*n)/(Factorial(k)*Factorial(n)*Factorial(k+n)): k in [0..n], n in [0..9]];
-
Flatten[Table[Table[(2 k)! ((2 n)!/(k! n! (k + n)!)), {k, 0, n}], {n, 0, 9}]]
Showing 1-10 of 13 results.
Comments