cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000917 a(n) = (2n+3)!/(n!*(n+2)!).

Original entry on oeis.org

3, 20, 105, 504, 2310, 10296, 45045, 194480, 831402, 3527160, 14872858, 62403600, 260757900, 1085822640, 4508102925, 18668849760, 77138650050, 318107374200, 1309542023790, 5382578744400, 22093039119060, 90567738003600, 370847442355650, 1516927277253024
Offset: 0

Views

Author

Keywords

Comments

G.f.: c(x)*(4-c(x))/(1-4*x)^(3/2), c(x) = g.f. for Catalan numbers A000108 (agrees with Hansen, 1975, p. 99, (5.27.9)). Convolution of A038679 with A000984 (central binomial coefficients); also convolution of A038665 with A000302 (powers of 4). - Wolfdieter Lang, Dec 11 1999
Appears as diagonal in A003506. - Zerinvary Lajos, Apr 12 2006
a(n) is the number of double rises in all Grand Dyck paths of semilength n+2. Example: a(0)=3 because in the 6 (=A000984(2)) Grand Dyck paths of semilength 2, namely udud, (uu)dd, uddu, d(uu)d, dudu, dd(uu), we have a total of 3 uu's (shown between parentheses). - Emeric Deutsch, Nov 29 2008

References

  • Eldon R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 99, (5.27.9).

Crossrefs

Programs

  • Magma
    [(n+1)*Binomial(2*n+3, n+1): n in [0..25]]; // Vincenzo Librandi, Jun 01 2016
  • Maple
    a := proc(n) (n+1)*binomial(2*n+3, n+2) end: seq(a(n), n=0..23); # Zerinvary Lajos, Nov 26 2006
    seq((n+1)*binomial(2*n+4, n+2)/2, n=0..23); # Zerinvary Lajos, Feb 28 2007
  • Mathematica
    Table[(2*n + 3)!/(n!*(n + 2)!), {n, 0, 25}] (* T. D. Noe, Jun 20 2012 *)

Formula

a(n) = (n+1)*binomial(2*n+3, n+1) = (n+1)*A001700(n+1). - Vincenzo Librandi, Jun 01 2016
a(n) = (2*n+3)*A001791(n+1). - R. J. Mathar, Nov 09 2021
D-finite with recurrence +(n+2)*a(n) +10*(-n-1)*a(n-1) +12*(2*n+1)*a(n-2)=0. - R. J. Mathar, Nov 09 2021
D-finite with recurrence n*(n+2)*a(n) -2*(2*n+3)*(n+1)*a(n-1)=0. - R. J. Mathar, Nov 09 2021
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 - Pi/(3*sqrt(3)) = 1 - A073010.
Sum_{n>=0} (-1)^n/a(n) = 6*log(phi)/sqrt(5) - 1, where phi is the golden ratio (A001622). (End)

A000777 a(n) = (n+2)*Catalan(n) - 1.

Original entry on oeis.org

1, 2, 7, 24, 83, 293, 1055, 3860, 14299, 53481, 201551, 764217, 2912167, 11143499, 42791039, 164812364, 636438059, 2463251009, 9552773999, 37112526989, 144410649239, 562724141459, 2195581527359, 8576490341249, 33537507830423, 131272552839203, 514285886020255
Offset: 0

Views

Author

Keywords

Crossrefs

a(n) = A038665(n-1) - 1.

Programs

  • Magma
    [(n+2)*Catalan(n)-1: n in [0..30]]; // Vincenzo Librandi, Sep 11 2016
  • Maple
    [seq((binomial(2*n,n)/(n+1))*(n+2)-1,n=0..27)]; # Zerinvary Lajos, Jun 25 2006
  • Mathematica
    Table[(n + 2)*CatalanNumber[n] - 1, {n, 0, 20}] (* T. D. Noe, Jun 20 2012 *)
  • PARI
    a(n) = (n+2)*binomial(2*n,n)/(n+1) - 1; \\ Michel Marcus, Sep 11 2016
    

Formula

a(n) = (binomial(2*n,n)/(n+1))*(n+2) - 1. - Zerinvary Lajos, Jun 25 2006
G.f.: (1/x)*(1/2 + (6*x-1)/(2*sqrt(1-4*x))-x/(1-x)). - Vladimir Kruchinin, Aug 18 2010
D-finite with recurrence: (n+1)*a(n) + 4*(-3*n+1)*a(n-1) + 5*(9*n-13)*a(n-2) + 2*(-29*n+72)*a(n-3) + 12*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Jun 11 2019

A038679 Convolution of A007054 (Super ballot numbers) with A000302 (powers of 4).

Original entry on oeis.org

3, 14, 59, 242, 982, 3964, 15955, 64106, 257282, 1031780, 4135518, 16569204, 66365964, 265761016, 1064046979, 4259609626, 17050224394, 68241838036, 273110643754, 1092947507356, 4373580244084, 17500703480776
Offset: 0

Views

Author

Keywords

Comments

Also: convolution of A038665 with A000984 (central binomial coefficients )

Crossrefs

Formula

a(n) = 4^(n+1) - C(n+1), C(n): Catalan numbers A000108; G.f. c(x)*(4-c(x))/(1-4*x), where c(x) = g.f. for Catalan numbers.

A038697 Convolution of A000917 with A000984 (central binomial coefficients).

Original entry on oeis.org

3, 26, 163, 894, 4558, 22196, 104739, 483062, 2189530, 9789900, 43295118, 189749676, 825364668, 3567219688, 15332925731, 65591312550, 279415474594, 1185903736412, 5016725589402, 21159849864964, 89012979703940
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A007054 (Super ballot numbers) with A002697;

Crossrefs

Programs

  • Maple
    seq(n*4^(n+1)+binomial(2*n+3,n+1),n=0..30); # Robert Israel, May 22 2019

Formula

a(n) = n*4^(n+1)+binomial(2*n+3, n+1).
G.f.: c(x)*(4-c(x))/(1-4*x)^2, where c(x) = g.f. for Catalan numbers A000108.
(160+64*n)*a(n) - (160+48*n)*a(n+1) + (50+12*n)*a(n+2) - (5+n)*a(n+3)=0. - Robert Israel, May 22 2019

A275329 a(n) = (2+[n/2])*n!/((1+[n/2])*[n/2]!^2).

Original entry on oeis.org

2, 2, 3, 9, 8, 40, 25, 175, 84, 756, 294, 3234, 1056, 13728, 3861, 57915, 14300, 243100, 53482, 1016158, 201552, 4232592, 764218, 17577014, 2912168, 72804200, 11143500, 300874500, 42791040, 1240940160, 164812365, 5109183315, 636438060, 21002455980, 2463251010
Offset: 0

Views

Author

Peter Luschny, Sep 10 2016

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (2+iquo(n,2))*n!/((1+iquo(n,2))*iquo(n, 2)!^2):
    seq(a(n), n=0..34);
  • Sage
    def A275329():
        x, n, k = 1, 1, 2
        while True:
            yield x * k
            if is_odd(n):
                x *= n
            else:
                k += 1
                x = (x<<2)//(n+2)
            n += 1
    a = A275329(); print([next(a) for _ in range(37)])

Formula

a(n) = A056040(n)*(2+[n/2])/(1+[n/2]).
a(n) = A057977(n)*A008619(n+2).
a(2*n+1) = (n+2)*binomial(2*n+1, n+1) = A189911(2*n+1).
a(2*n-3) = n*binomial(2*n-3, n-1) = A097070(n) for n>=2.
a(2*n+2) = (n+3)*binomial(2*n+2, n+1)/(n+2) = A038665(n).
Sum_{n>=0} 1/a(n) = 16/3 - 40*Pi/(9*sqrt(3)) + 4*Pi^2/9. - Amiram Eldar, Aug 20 2022
Showing 1-5 of 5 results.