A007306 Denominators of Farey tree fractions (i.e., the Stern-Brocot subtree in the range [0,1]).
1, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9, 6, 7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19, 17, 18, 21, 19, 14, 13, 17, 18, 15, 13, 14, 11, 7, 8, 13, 17, 16, 19, 23, 22, 17, 19, 26, 29, 25, 24
Offset: 0
Examples
[ 0/1; 1/1; ] 1/2; 1/3, 2/3; 1/4, 2/5, 3/5, 3/4; 1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5; ...
References
- P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 61.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 158.
- J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Suayb S. Arslan, Asymptotically MDS Array BP-XOR Codes, arXiv:1709.07949 [cs.IT], 2017.
- Alexander Bogomolny, Stern-Brocot tree.
- J. Hermes, Anzahl der Zerlegungen einer ganzen, rationalen Zahl in Summanden (The number of partitions of a rational integer, Part I), Mathematischen Annalen 45(3) (1894), 371-380.
- J. Hermes, Anzahl der Zerlegungen einer ganzen, rationalen Zahl in Summanden (The number of partitions of a rational integer, Part I), Mathematischen Annalen 45(3) (1894), 371-380.
- J. Hermes, Anzahl der Zerlegungen einer ganzen, rationalen Zahl in Summanden, II (The number of partitions of a rational integer, Part II), Mathematischen Annalen 47(2-3) (1896), 281-297.
- M. Herzberger, Gaussian optics and Gaussian brackets, Journal of the Optical Society of America 33(12) (1943), 651-655. [This paper gives a clear description of Gaussian brackets that are related to this sequence as explained by Hermes (1894).]
- Jennifer Lansing, On the Stern sequence and a related sequence, Ph.D. dissertation in Mathematics, University of Illinois at Urbana-Champaign, 2014. [This doctoral dissertation discusses the so-called Stern sequence on which Hermes' papers are based (according to Srinivasan (1958)).]
- Julien Leroy, Michel Rigo, and Manon Stipulanti, Counting the number of non-zero coefficients in rows of generalized Pascal triangles, Discrete Mathematics 340 (2017), 862-881.
- Julien Leroy, Michel Rigo, and Manon Stipulanti, Counting subword occurrences in base-b expansions, Integers (2018) 18A, Article #A13.
- G. Melançon, Lyndon factorization of sturmian words, Discr. Math. 210 (2000), 137-149.
- N. J. A. Sloane, Stern-Brocot or Farey Tree.
- M. S. Srinivasan, The enumeration of positive rational numbers, Proc. Indian Acad. Sci. Sect. A 47 (1958), 12-24.
- M. Stern, Über eine zahlentheoretische Function, Journal für die reine und angewandte Mathematik 55 (1858), 193-220. [According to Srinivasan (1958), Hermes's (1894) paper, where this sequence is introduced, is based on Stern's sequence.]
- Manon Stipulanti, Convergence of Pascal-Like Triangles in Parry-Bertrand Numeration Systems, arXiv:1801.03287 [math.CO], 2018.
- Javier Torres Suarez, Number theory - geometric connection (part 2) (YouTube video that mentions this sequence - link sent by Pacha Nambi, Aug 26 2009).
- Eric Weisstein's World of Mathematics, Gaussian brackets; they are related to this sequence.
- Wikipedia, Johann Gustav Hermes. [He is the person who introduced this sequence and the person who completed or constructed a regular polygon with 65537 sides.]
- Index entries for fraction trees
- Index entries for sequences related to Stern's sequences
Crossrefs
Programs
-
Magma
[1] cat [&+[Binomial(n+k,2*k) mod 2: k in [0..n]]: n in [0..80]]; // Vincenzo Librandi, Jun 10 2019
-
Maple
A007306 := proc(n): if n=0 then 1 else A002487(2*n-1) fi: end: A002487 := proc(m) option remember: local a, b, n; a := 1; b := 0; n := m; while n>0 do if type(n, odd) then b := a + b else a := a + b end if; n := floor(n/2); end do; b; end proc: seq(A007306(n),n=0..77); # Johannes W. Meijer, Jun 05 2011
-
Mathematica
a[0] = 1; a[n_] := Sum[ Mod[ Binomial[n+k-1, 2k] , 2], {k, 0, n}]; Table[a[n], {n, 0, 77}] (* Jean-François Alcover, Dec 16 2011, after Paul Barry *) a[0] = 0; a[1] = 1; Flatten[{1,Table[a[2*n] = a[n]; a[2*n + 1] = a[n] + a[n + 1], {n, 0, 50}]}] (* Horst H. Manninger, Jun 09 2021 *)
-
PARI
{a(n) = if( n<1, n==0, n--; sum( k=0, n, binomial( n+k, n-k)%2))};
-
PARI
{a(n) = my(m); if( n<2, n>=0, m = 2^length( binary( n-1)); a(n - m/2) + a(m-n+1))}; /* Michael Somos, May 30 2005 */
-
Python
from sympy import binomial def a(n): return 1 if n<1 else sum(binomial(n + k - 1, 2*k) % 2 for k in range(n + 1)) print([a(n) for n in range(101)]) # Indranil Ghosh, Mar 22 2017
-
Python
from functools import reduce def A007306(n): return sum(reduce(lambda x,y:(x[0],sum(x)) if int(y) else (sum(x),x[1]),bin((n<<1)-1)[-1:2:-1],(1,0))) if n else 1 # Chai Wah Wu, May 18 2023
-
R
maxrow <- 6 # by choice a <- c(1,2) for(m in 0:maxrow) for(k in 1:2^m){ a[2^(m+1)+k ] <- a[2^m+k] + a[k] a[2^(m+1)-k+1] <- a[2^m+k] } a # Yosu Yurramendi, Jan 05 2015
-
R
# Given n, compute directly a(n) # by taking into account the binary representation of n-1 # aa <- function(n){ b <- as.numeric(intToBits(n)) l <- sum(b) m <- which(b == 1)-1 d <- 1 if(l > 1) for(j in 1:(l-1)) d[j] <- m[j+1]-m[j]+1 f <- c(1,m[1]+2) # In A002487: f <- c(0,1) if(l > 1) for(j in 3:(l+1)) f[j] <- d[j-2]*f[j-1]-f[j-2] return(f[l+1]) } # a(0) = 1, a(1) = 1, a(n) = aa(n-1) n > 1 # # Example n <- 73 aa(n-1) # # Yosu Yurramendi, Dec 15 2016
-
Sage
@CachedFunction def a(n): return a((odd_part(n-1)+1)/2)+a((odd_part(n)+1)/2) if n>1 else 1 [a(n) for n in (0..77)] # after Alessandro De Luca, Peter Luschny, May 20 2014
-
Sage
def A007306(n): if n == 0: return 1 M = [1, 1] for b in (n-1).bits(): M[b] = M[0] + M[1] return M[1] print([A007306(n) for n in (0..77)]) # Peter Luschny, Nov 28 2017
-
Scheme
(define (A007306 n) (if (zero? n) 1 (A002487 (+ n n -1)))) ;; Code for A002487 given in that entry. - Antti Karttunen, Mar 21 2017
Formula
Recurrence: a(0) to a(8) are 1, 1, 2, 3, 3, 4, 5, 5, 4; thereafter a(n) = a(n-2^p) + a(2^(p+1)-n+1), where 2^p < n <= 2^(p+1). [J. Hermes, Math. Ann., 1894; quoted by Dickson, Vol. 1, p. 158] - N. J. A. Sloane, Mar 24 2019
a(4*n) = -a(n)+2*a(2*n); a(4*n+1) = -a(n)+a(2*n)+a(2*n+1); a(4*n+2)=a(n)-a(2*n)+2*a(2*n+1); a(4*n+3) = 4*a(n)-4*a(2*n)+3*a(2*n+1). Thus a(n) is a 2-regular sequence. - Jeffrey Shallit, Dec 26 2024
a(0) = 1; a(n) = Sum_{k=0..n-1} C(n-1+k, n-1-k) mod 2, n > 0. - Benoit Cloitre, Jun 20 2003
a(n+1) = Sum_{k=0..n} binomial(2*n-k, k) mod 2; a(n) = 0^n + Sum_{k=0..n-1} binomial(2(n-1)-k, k) mod 2. - Paul Barry, Dec 11 2004
a(n) = Sum_{k=0..n} C(n+k,2*k) mod 2. - Paul Barry, Jun 12 2006
a(n) = A007305(2^(m+1)-n) - A007305(2^m-n), m >= (A029837(n)+1), n=1,2,3,... - Yosu Yurramendi, Jul 05 2014
a(2^m) = m+1, a(2^m+1) = m+2 for m >= 0. - Yosu Yurramendi, Jan 01 2015
a(2^m+2^r+k) = a(2^r+k)(m-r+1) - a(k), m >= 2, 0 <= r <= m-1, 0 <= k < 2^r. Example: a(73) = a(2^6+2^3+1) = a(2^3+1)*(6-3+1) - a(1) = 5*4 - 1 = 19 . - Yosu Yurramendi, Jul 19 2016
From Antti Karttunen, Mar 21 2017 & Apr 12 2017: (Start)
The following decompositions hold for all n > 0:
a(A059893(n)) = a(n+1) for n > 0. - Yosu Yurramendi, May 30 2017
From Yosu Yurramendi, May 14 2019: (Start)
For m >= 0, M >= m, 0 <= k < 2^m,
a(2^(M+2) - (2^m+k)) = a(2^(M+1) + (2^m+k) + 1) =
a(2^m+k+1)*(M-m) + a(2^(m+1)+2^m+k+1). (End)
a(k) = sqrt(A007305(2^(m+1)+k)*A047679(2^(m+1)+k-2) - A007305(2^m+k)*A047679(2^m+k-2)), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Jun 09 2019
G.f.: 1 + x * (1 + x) * Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Jul 19 2019
Conjecture: a(n) = a(n-1) + b(n-1) - 2*(a(n-1) mod b(n-1)) for n > 1 with a(0) = a(1) = 1 where b(n) = a(n) - b(n-1) for n > 1 with b(1) = 1. - Mikhail Kurkov, Mar 13 2022
Extensions
Formula fixed and extended by Franklin T. Adams-Watters, Jul 07 2009
Incorrect Maple program removed by Johannes W. Meijer, Jun 05 2011
Comments