Original entry on oeis.org
1, 7, 46, 366, 3647, 44205, 630956, 10350572, 191704349, 3954598099, 89888942874, 2231742720730, 60083847852539, 1743321481158041, 54226970410827160, 1800062257926566488, 63512168752599139129, 2373501269897667585631
Offset: 1
A120733
Number of matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
Original entry on oeis.org
1, 1, 5, 33, 281, 2961, 37277, 546193, 9132865, 171634161, 3581539973, 82171451025, 2055919433081, 55710251353953, 1625385528173693, 50800411296363617, 1693351638586070209, 59966271207156833313, 2248276994650395873861, 88969158875611127548481
Offset: 0
a(2) = 5:
[1 0] [0 1] [1] [1 1] [2]
[0 1] [1 0] [1]
From _Gus Wiseman_, Nov 14 2018: (Start)
The a(3) = 33 matrices:
[3][21][12][111]
.
[2][20][11][11][110][101][1][10][10][100][02][011][01][01][010][001]
[1][01][10][01][001][010][2][11][02][011][10][100][20][11][101][110]
.
[1][10][10][10][100][100][01][01][010][01][010][001][001]
[1][10][01][01][010][001][10][10][100][01][001][100][010]
[1][01][10][01][001][010][10][01][001][10][100][010][100]
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Sara C. Billey, M. Konvalinka, T. K. Petersen, W. Slofstra, and B. E. Tenner, Parabolic double cosets in Coxeter groups, Discrete Mathematics and Theoretical Computer Science, Submitted, 2016.
- Thomas Browning, Counting Parabolic Double Cosets in Symmetric Groups, arXiv:2010.13256 [math.CO], 2020.
- Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts See IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13, page 436, Springer, Berlin.
- Giulio Cerbai and Anders Claesson, Caylerian polynomials, arXiv:2310.01270 [math.CO], 2023. Mentions this sequence.
- Giulio Cerbai and Anders Claesson, Enumerative aspects of Caylerian polynomials, arXiv:2411.08426 [math.CO], 2024. See pp. 3, 19.
- P. Diaconis and A. Gangolli, Rectangular arrays with fixed margins, Discrete probability and algorithms (Minneapolis, MN, 1993), 15-41, IMA Vol. Math. Appl., 72, Springer, New York, 1995.
- G. Duchamp, F. Hivert and J.-Y. Thibon, Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras, arXiv:math/0105065 [math.CO], 2001; Internat. J. Alg. Comp. 12 (2002), 671-717.
- Loïc Foissy, Claudia Malvenuto, and Frédéric Patras, Matrix symmetric and quasi-symmetric functions and noncommutative representation theory, arXiv:2503.14417 [math.CO], 2025. See p. 11.
- Masato Kobayashi, Construction of double coset system of a Coxeter group and its applications to Bruhat graphs, arXiv:1907.11801 [math.CO], 2019.
- Vaclav Kotesovec, Asymptotics of the sequence A120733
- E. Munarini, M. Poneti, and S. Rinaldi, Matrix compositions, JIS 12 (2009) 09.4.8, Remark 30.
- T. K. Petersen, A two-sided analogue of the Coxeter complex, arXiv:1607.00086 [math.CO], (2016).
-
t1 := M -> add( add( add( (-1)^(n-j)*binomial(n, j)*((1-x)^(-j)-1)^m, j=0..n), n=0..M), m=0..M); s := series(t1(20),x,20); gfun[seriestolist](%); # N. J. A. Sloane, Jan 14 2009
-
a[n_] := Sum[2^(-2-r-s)*Binomial[n+r*s-1, n], {r, 0, Infinity}, {s, 0, Infinity}]; Table[Print[an = a[n]]; an, {n, 0, 19}] (* Jean-François Alcover, May 15 2012, after Vladeta Jovovic *)
Flatten[{1,Table[1/n!*Sum[(-1)^(n-k)*StirlingS1[n,k]*Sum[m!*StirlingS2[k, m],{m,k}]^2,{k,n}],{n,20}]}] (* Vaclav Kotesovec, May 07 2014 *)
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#]]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)
A101370
Number of zero-one matrices with n ones and no zero rows or columns.
Original entry on oeis.org
1, 4, 24, 196, 2016, 24976, 361792, 5997872, 111969552, 2324081728, 53089540992, 1323476327488, 35752797376128, 1040367629940352, 32441861122796672, 1079239231677587264, 38151510015777089280, 1428149538870997774080, 56435732691153773665280
Offset: 1
a(2)=4:
[1 1] [1] [1 0] [0 1]
..... [1] [0 1] [1 0]
From _Gus Wiseman_, Nov 14 2018: (Start)
The a(3) = 24 matrices:
[111]
.
[11][11][110][101][10][100][011][01][010][001]
[10][01][001][010][11][011][100][11][101][110]
.
[1][10][10][10][100][100][01][01][010][01][010][001][001]
[1][10][01][01][010][001][10][10][100][01][001][100][010]
[1][01][10][01][001][010][10][01][001][10][100][010][100]
(End)
- Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, p. 435 (IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13), Springer, Berlin. [Rainer Rosenthal, Apr 10 2007]
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- P. J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
- Giulio Cerbai and Anders Claesson, Enumerative aspects of Caylerian polynomials, arXiv:2411.08426 [math.CO], 2024. See pp. 3, 19.
- Loïc Foissy, Claudia Malvenuto, and Frédéric Patras, Matrix symmetric and quasi-symmetric functions and noncommutative representation theory, arXiv:2503.14417 [math.CO], 2025. See p. 20.
- M. Maia and M. Mendez, On the arithmetic product of combinatorial species, arXiv:math/0503436 [math.CO], 2005.
-
P:=function(n) return Sum([1..n],x->Stirling2(n,x)*Factorial(x)); end;
-
F:=function(n) return Sum([1..n],x->(-1)^(n-x)*Stirling1(n,x)*P(x)^2)/Factorial(n); end;
-
m = 17; a670[n_] = Sum[ StirlingS2[n, k]*k!, {k, 0, n}]; Rest[ CoefficientList[ Series[ Sum[ a670[n]^2*(Log[1 + x]^n/n!), {n, 0, m}], {x, 0, m}], x]] (* Jean-François Alcover, Sep 02 2011, after g.f. *)
Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#]]&]],{n,5}] (* Gus Wiseman, Nov 14 2018 *)
-
{A000670(n)=sum(k=0,n,stirling(n, k,2)*k!)}
{a(n)=polcoeff(sum(m=0,n,A000670(m)^2*log(1+x+x*O(x^n))^m/m!),n)}
/* Paul D. Hanna, Nov 07 2009 */
Showing 1-3 of 3 results.
Comments