A007407 a(n) = denominator of Sum_{k=1..n} 1/k^2.
1, 4, 36, 144, 3600, 3600, 176400, 705600, 6350400, 1270080, 153679680, 153679680, 25971865920, 25971865920, 129859329600, 519437318400, 150117385017600, 150117385017600, 54192375991353600, 10838475198270720, 221193371393280
Offset: 1
Examples
1/1^2 + 1/2^2 + 1/3^2 = 1/1 + 1/4 + 1/9 = 49/36, so a(3) = 36. - _Jon E. Schoenfield_, Dec 26 2014
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1152 (terms 1..200 from T. D. Noe)
- D. Y. Savio, E. A. Lamagna and S.-M. Liu, Summation of harmonic numbers, pp. 12-20 of E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989.
Programs
-
Haskell
import Data.Ratio ((%), denominator) a007407 n = a007407_list !! (n-1) a007407_list = map denominator $ scanl1 (+) $ map (1 %) $ tail a000290_list -- Reinhard Zumkeller, Jul 06 2012
-
Maple
ZL:=n->sum(1/i^2, i=2..n): a:=n->floor(denom(ZL(n))): seq(a(n), n=1..21); # Zerinvary Lajos, Mar 28 2007
-
Mathematica
s=0;lst={};Do[s+=n^2/n^4;AppendTo[lst,Denominator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *) Table[Denominator[Pi^2/6 - Zeta[2, x]], {x, 1, 22}] (* Artur Jasinski, Mar 03 2010 *) Denominator[Accumulate[1/Range[30]^2]] (* Harvey P. Dale, Nov 08 2012 *)
-
PARI
a(n)=denominator(sum(k=1,n,1/k^2)) \\ Charles R Greathouse IV, Nov 20 2012
-
Python
from fractions import Fraction def A007407(n): return sum(Fraction(1,k**2) for k in range(1,n+1)).denominator # Chai Wah Wu, Apr 03 2021
Formula
a(n) = denominator of (Pi^2)/6 - zeta(2, x). - Artur Jasinski, Mar 03 2010
Comments