A238166 Decimal expansion of sum_(n>=1) H(n,2)/n^4 where H(n,2) = A007406(n)/A007407(n) is the n-th harmonic number of order 2.
1, 1, 0, 5, 8, 2, 6, 4, 4, 4, 4, 3, 8, 8, 1, 7, 8, 5, 4, 0, 0, 8, 8, 4, 5, 7, 6, 8, 8, 7, 6, 6, 8, 0, 9, 8, 4, 5, 4, 9, 7, 9, 6, 2, 4, 2, 4, 1, 9, 6, 0, 4, 1, 5, 3, 5, 1, 7, 2, 9, 7, 9, 4, 0, 5, 6, 3, 8, 0, 6, 4, 6, 1, 8, 3, 0, 7, 0, 1, 4, 6, 9, 3, 3, 8, 6, 0, 1, 7, 7, 2, 5, 3, 9, 0, 0, 5, 7, 5, 7
Offset: 1
Examples
1.1058264444388178540088457688766809845497962424196...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Philippe Flajolet, Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998) page 16.
Programs
-
Mathematica
RealDigits[Zeta[3]^2 - 1/3*Zeta[6], 10, 100][[1]]
-
PARI
zeta(3)^2-Pi^6/2835 /* Michel Marcus, Jul 04 2014 */
Formula
Equals zeta(3)^2 - zeta(6)/3.
Comments