A007429 Inverse Moebius transform applied twice to natural numbers.
1, 4, 5, 11, 7, 20, 9, 26, 18, 28, 13, 55, 15, 36, 35, 57, 19, 72, 21, 77, 45, 52, 25, 130, 38, 60, 58, 99, 31, 140, 33, 120, 65, 76, 63, 198, 39, 84, 75, 182, 43, 180, 45, 143, 126, 100, 49, 285, 66, 152, 95, 165, 55, 232, 91, 234, 105, 124, 61, 385, 63, 132, 162, 247, 105, 260
Offset: 1
References
- David M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston, MA, 1976, p. 120.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Travis Scholl, Table of n, a(n) for n = 1..100000 (terms 1 through 1000 were by T. D. Noe)
- Olivier Bordelles, Mean values of generalized gcd-sum and lcm-sum functions, JIS, Vol. 10 (2007), Article 07.9.2, series g_4 (with an apparently wrong D.g.f. after equation 3).
- N. J. A. Sloane, Transforms.
Programs
-
Magma
[&+[SumOfDivisors(d): d in Divisors(n)]: n in [1..100]] // Jaroslav Krizek, Sep 24 2016
-
Maple
A007429 := proc(n) add(numtheory[sigma](d),d=numtheory[divisors](n)) ; end proc: seq(A007429(n),n=1..100) ; # R. J. Mathar, Aug 28 2015
-
Mathematica
f[n_] := Plus @@ DivisorSigma[1, Divisors@n]; Array[f, 52] (* Robert G. Wilson v, May 05 2010 *) f[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 10 2022 *)
-
PARI
A007429_upto(N)=vector(N,n, sumdiv(n,d, sigma(d))) \\ edited by M. F. Hasler, Mar 29 2024
-
PARI
a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)^2/(1-p*X))[n]) \\ Ralf Stephan
-
PARI
N=17; default(seriesprecision,N); x=z+O(z^(N+1)) c=sum(j=1,N,j*x^j); t=1/prod(j=1,N, eta(x^(j))^(1/j)) t=log(t) t=serconvol(t,c) Vec(t) /* Joerg Arndt, May 03 2008 */
-
PARI
a(n)=sumdiv(n,d, sumdiv(d,t, t ) ); /* Joerg Arndt, Oct 07 2012 */
-
Python
from math import prod from sympy import factorint def A007429(n): return prod((p*(p**(e+1)-1)-(p-1)*(e+1))//(p-1)**2 for p,e in factorint(n).items()) # Chai Wah Wu, Mar 28 2024
-
Sage
def A(n): return sum(sigma(d) for d in n.divisors()) # Travis Scholl, Apr 14 2016
Formula
a(n) = Sum_{d|n} d*tau(n/d). - Vladeta Jovovic, Jul 31 2002
Multiplicative with a(p^e) = (p*(p^(e+1)-1)-(p-1)*(e+1))/(p-1)^2. - Vladeta Jovovic, Dec 25 2001
G.f.: Sum_{k>=1} sigma(k)*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Moebius transform of A007430. - Benoit Cloitre, Mar 03 2004
Dirichlet g.f.: zeta(s-1)*zeta^2(s).
Equals A051731^2 * [1, 2, 3, ...]. Equals row sums of triangle A134577. - Gary W. Adamson, Nov 02 2007
Row sums of triangle A134699. - Gary W. Adamson, Nov 06 2007
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(sigma(k)/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 26 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/72 = 1.352904... (A152649). - Amiram Eldar, Oct 22 2022
Comments