cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 61 results. Next

A280077 Partial sums of A007429 (Sum_{d|n} sigma(d)).

Original entry on oeis.org

1, 5, 10, 21, 28, 48, 57, 83, 101, 129, 142, 197, 212, 248, 283, 340, 359, 431, 452, 529, 574, 626, 651, 781, 819, 879, 937, 1036, 1067, 1207, 1240, 1360, 1425, 1501, 1564, 1762, 1801, 1885, 1960, 2142, 2185, 2365, 2410, 2553, 2679, 2779, 2828, 3113, 3179
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2016

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).

Crossrefs

Cf. A000203, A237349 (partial sums of A211776), A280078 (partial products of A007429).

Programs

  • Magma
    [&+[&+[SumOfDivisors(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]]
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, sigma(d))); \\ Michel Marcus, May 29 2018
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, Jul 24 2022

Formula

a(n) = Sum_{i=1..n} A007429(i).
a(n) = Sum_{k=1..n} A000203(k) * floor(n/k). - Daniel Suteu, May 28 2018
a(n) = Sum_{k=1..n} A000005(k)/2 * floor(n/k) * floor(1+n/k). - Daniel Suteu, May 28 2018
a(n) ~ Pi^4 * n^2 / 72. - Vaclav Kotesovec, Nov 06 2018
G.f.: (1/(1-x)) * Sum_{k>=1} sigma(k) * x^k/(1 - x^k). - Seiichi Manyama, Jul 24 2022

A280078 Partial products of A007429 (Sum_{d|n} sigma(d)).

Original entry on oeis.org

1, 4, 20, 220, 1540, 30800, 277200, 7207200, 129729600, 3632428800, 47221574400, 2597186592000, 38957798880000, 1402480759680000, 49086826588800000, 2797949115561600000, 53161033195670400000, 3827594390088268800000, 80379482191853644800000
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2016

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).

Crossrefs

Cf. A000203, A280075 (partial products of A211776), A280077 (partial sums of A007429).

Programs

  • Magma
    [&*[&+[SumOfDivisors(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]]

Formula

a(n) = Product_{i=1..n} A007429(i).

A296075 Sum of deficiencies of divisors of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 4, 7, 4, 8, 8, 11, 1, 13, 12, 13, 5, 17, 6, 19, 7, 19, 20, 23, -10, 24, 24, 22, 13, 29, 4, 31, 6, 31, 32, 33, -16, 37, 36, 37, -2, 41, 12, 43, 25, 30, 44, 47, -37, 48, 34, 49, 31, 53, 8, 53, 6, 55, 56, 59, -49, 61, 60, 46, 7, 63, 28, 67, 43, 67, 36, 71, -78, 73, 72, 58, 49, 75, 36, 79, -27, 63, 80, 83, -47, 83
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2017

Keywords

Comments

a(n)=0 for n in A066218. Are 1 and 12 the only solutions to a(n)=1? - Robert Israel, Dec 04 2017

Examples

			For n = 6, whose divisors are 1, 2, 3, 6, their deficiencies are 1, 1, 2, 0, thus a(6) = 1 + 1 + 2 + 0 = 4.
For n = 24, whose divisors are 1, 2, 3, 4, 6, 8, 12, 24, their deficiencies are 1, 1, 2, 1, 0, 1, -4, -12, thus a(24) = 1 + 1 + 2 + 1 + 0 + 1 + -4 + -12 = -10.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(2*t-numtheory:-sigma(t), t=numtheory:-divisors(n)):
    map(f, [$1..100]); # Robert Israel, Dec 04 2017
  • Mathematica
    f1[p_, e_] := (p^(e+1)-1)/(p-1); f2[p_, e_] := (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2; a[1] = 1; a[n_] := Module[{f = FactorInteger[n]}, 2 * Times @@ f1 @@@ f - Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Dec 04 2023 *)
  • PARI
    A033879(n) = ((2*n)-sigma(n));
    A296075(n) = sumdiv(n,d,A033879(d));

Formula

a(n) = Sum_{d|n} A033879(d).
a(n) = A296074(n) + A033879(n).
If m and n are coprime, a(m*n) = 2*a(m)*A000203(n)+2*a(n)*A000203(m)-a(m)*a(n)-2*A000203(m)*A000203(n). - Robert Israel, Dec 04 2017
a(n) = 2*A000203(n) - A007429(n). - Ridouane Oudra, Jul 29 2019
Sum_{k=1..n} a(k) ~ (Pi^2/6 - Pi^4/72) * n^2. - Amiram Eldar, Dec 04 2023

A321141 a(n) = Sum_{d|n} sigma_n(d).

Original entry on oeis.org

1, 6, 29, 291, 3127, 48246, 823545, 16909060, 387459858, 10019533302, 285311670613, 8920489178073, 302875106592255, 11113363271736486, 437893951444713443, 18447307036548136965, 827240261886336764179, 39346708467688595378892, 1978419655660313589123981
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[DivisorSigma(n, d):d in Divisors(n)]:n in [1..20]]; // Vincenzo Librandi, Feb 16 2020
  • Maple
    with(numtheory): seq(coeff(series(add(sigma[n](k)*x^k/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 20); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    Table[Sum[DivisorSigma[n, d], {d, Divisors[n]}] , {n, 19}]
    Table[SeriesCoefficient[Sum[DivisorSigma[n, k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}], {n, 19}]
  • PARI
    a(n) = sumdiv(n, d, sigma(d, n)); \\ Michel Marcus, Oct 28 2018
    
  • Python
    from sympy import divisor_sigma, divisors
    def A321141(n):
        return sum(divisor_sigma(d,0)*(n//d)**n for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
    

Formula

a(n) = [x^n] Sum_{k>=1} sigma_n(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} d^n*tau(n/d).
a(n) ~ n^n. - Vaclav Kotesovec, Feb 16 2020

A066780 a(n) = Product_{k=1..n} sigma(k); sigma(k) is the sum of the positive divisors of n.

Original entry on oeis.org

1, 3, 12, 84, 504, 6048, 48384, 725760, 9434880, 169827840, 2037934080, 57062154240, 798870159360, 19172883824640, 460149211791360, 14264625565532160, 256763260179578880, 10013767147003576320, 200275342940071526400, 8411564403483004108800
Offset: 1

Views

Author

Benoit Cloitre and Leroy Quet, Jan 18 2002

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = A007429(gcd(i,j)) for 1 <= i,j <= n. - Enrique Pérez Herrero, Aug 12 2011

Crossrefs

Programs

  • Maple
    with(numtheory):seq(mul(sigma(k),k=1..n), n=1..26); # Zerinvary Lajos, Jan 11 2009
    with(numtheory):a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=a[n-1]*sigma(n) od: seq(a[n], n=0..18); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    A066780[n_] := Product[DivisorSigma[1,i], {i,1,n}]; Array[A066780,20] (* Enrique Pérez Herrero, Aug 12 2011 *)
    FoldList[Times,DivisorSigma[1,Range[20]]] (* Harvey P. Dale, Jan 29 2022 *)
  • PARI
    { p=1; for (n=1, 100, write("b066780.txt", n, " ", p*=sigma(n)) ) } \\ Harry J. Smith, Mar 25 2010

Formula

Lim_{n->infinity} (a(n)^(1/n)) / n = A345144 / exp(1) = 0.57447937538407152396420163967936309825692994713661226083669171312803511135... - Vaclav Kotesovec, Jun 09 2021

A107759 a(n) = (+2)UnitarySigma(n): if n = Product p_i^r_i then a(n) = Product (2 + p_i^r_i).

Original entry on oeis.org

1, 4, 5, 6, 7, 20, 9, 10, 11, 28, 13, 30, 15, 36, 35, 18, 19, 44, 21, 42, 45, 52, 25, 50, 27, 60, 29, 54, 31, 140, 33, 34, 65, 76, 63, 66, 39, 84, 75, 70, 43, 180, 45, 78, 77, 100, 49, 90, 51, 108, 95, 90, 55, 116, 91
Offset: 1

Views

Author

Yasutoshi Kohmoto, May 25 2005

Keywords

Examples

			a(12) = (2+3)*(2+4) = 30.
		

Crossrefs

Programs

  • Maple
    A107759 := proc(n) local pf,p ; if n = 1 then 1; else pf := ifactors(n)[2] ; mul( 2+op(1,p)^op(2,p), p=pf) ; end if; end proc:
    seq(A107759(n),n=1..60) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    a[1] = 1; a[n_] := Times @@ (2 + Power @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)

Formula

a(n) = Sum_{d|n, gcd(d, n/d) = 1} usigma(d), where usigma = A034448. - Ilya Gutkovskiy, Mar 27 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 + 1/p^2 - 2/p^3) = A072691 * A330594 = 0.910438... . - Amiram Eldar, Nov 01 2022

A127170 Triangle read by rows: T(n,k) is the number of divisors of n that are divisible by k, with 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 3, 2, 0, 1, 2, 0, 0, 0, 1, 4, 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 4, 3, 0, 2, 0, 0, 0, 1, 3, 0, 2, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 4, 3, 2, 0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Comments

Column k lists the terms of A000005 interleaved with k - 1 zeros.
Eigensequence of the triangle = A007557; i.e., sequence A007557 shifts to the left upon multiplication by A127170. - Gary W. Adamson, Apr 27 2009

Examples

			First 10 rows of the triangle:
  1;
  2, 1;
  2, 0, 1;
  3, 2, 0, 1;
  2, 0, 0, 0, 1;
  4, 2, 2, 0, 0, 1;
  2, 0, 0, 0, 0, 0, 1;
  4, 3, 0, 2, 0, 0, 0, 1;
  3, 0, 2, 0, 0, 0, 0, 0, 1;
  4, 2, 0, 0, 2, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Programs

Formula

A007429(n) = Sum_{i=1..n} i*a(i).
T(n,k) = A000005(n/k), if k divides n, otherwise 0, with n >= 1 and 1 <= k <= n. - Omar E. Pol, Apr 01 2015

Extensions

8 terms taken from Example section and then corrected in Data section by Omar E. Pol, Mar 30 2015
Extended beyond a(21) by Omar E. Pol, Apr 01 2015
New name (which was a comment dated Mar 30 2015) from Omar E. Pol, Feb 16 2022

A191161 Hypersigma(n), definition 2: sum of the divisors of n plus the recursive sum of the divisors of the proper divisors.

Original entry on oeis.org

1, 4, 5, 12, 7, 22, 9, 32, 19, 30, 13, 72, 15, 38, 37, 80, 19, 90, 21, 96, 47, 54, 25, 208, 39, 62, 65, 120, 31, 178, 33, 192, 67, 78, 65, 316, 39, 86, 77, 272, 43, 222, 45, 168, 147, 102, 49, 560, 67, 174, 97, 192, 55
Offset: 1

Views

Author

Alonso del Arte, May 26 2011

Keywords

Comments

In wanting to ensure the definition was not arbitrary, I initially thought that 1s had to stop the recursion. But as T. D. Noe showed me, this doesn't have to be the case: the 1s can be included in the recursion.

Crossrefs

Cf. A000203, A191150, A202687, A255242, A378211 (Dirichlet inverse).
Sequences that appear in the convolution formulas: A000010, A000203, A007429, A038040, A060640, A067824, A074206, A174725, A253249, A323910, A323912, A330575.

Programs

  • Mathematica
    hsTD[n_] := hsTD[n] = Module[{d = Divisors[n]}, Total[d] + Total[hsTD /@ Most[d]]]; Table[hsTD[n], {n, 100}] (* From T. D. Noe *)
  • PARI
    a(n)=sumdiv(n,d,if(dCharles R Greathouse IV, Dec 20 2011

Formula

a(n) = sigma(n) + sum_{d | n, d < n} a(d). - Charles R Greathouse IV, Dec 20 2011
From Antti Karttunen, Nov 22 2024: (Start)
Following formulas were conjectured by Sequence Machine:
For n > 1, a(n) = A191150(n) + A074206(n).
a(n) = A330575(n) + A255242(n) = 2*A255242(n) + n = 2*A330575(n) - n.
a(n) = Sum_{d|n} A330575(d).
a(n) = Sum_{d|n} d*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A074206(n/d).
a(n) = Sum_{d|n} A007429(d)*A174725(n/d).
a(n) = Sum_{d|n} A000010(d)*A253249(n/d).
a(n) = Sum_{d|n} A038040(d)*A323912(n/d).
a(n) = Sum_{d|n} A060640(d)*A323910(n/d).
(End)

A007430 Inverse Moebius transform applied thrice to natural numbers.

Original entry on oeis.org

1, 5, 6, 16, 8, 30, 10, 42, 24, 40, 14, 96, 16, 50, 48, 99, 20, 120, 22, 128, 60, 70, 26, 252, 46, 80, 82, 160, 32, 240, 34, 219, 84, 100, 80, 384, 40, 110, 96, 336, 44, 300, 46, 224, 192, 130, 50, 594, 76, 230, 120, 256, 56, 410, 112, 420, 132, 160, 62, 768, 64, 170, 240, 466, 128, 420
Offset: 1

Views

Author

Keywords

Comments

a(n) = A000027(n) * A000012(n) * A000012(n) * A000012(n) = A000027(n) * A000012(n) * A000005(n) = A000203(n) * A000005(n) = A000203(n) * A000012(n) * A000012(n) = A007429(n) * A000012(n), where operation * denotes Dirichlet convolution for n >= 1. Dirichlet convolution of functions b(n), c(n) is function a(n) = b(n) * c(n) = Sum_{d|n} b(d)*c(n/d). - Jaroslav Krizek, Mar 20 2009

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007430 n = sum $ zipWith (*) (map a000005 ds) (map a000203 $ reverse ds)
                where ds = a027750_row n
    -- Reinhard Zumkeller, Aug 02 2014
  • Mathematica
    a[n_] := Total[ DivisorSigma[1, #]*DivisorSigma[0, n/#]& /@ Divisors[n]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 15 2011 *)
  • PARI
    a(n)=sumdiv(n,d,sigma(d)*numdiv(n/d))
    
  • PARI
    a(n)=if(n<1,0,direuler(p=2,n,1/(1-X)^3/(1-p*X))[n]) /* Ralf Stephan */
    
  • PARI
    a(n)=sumdiv(n, x, sumdiv(x, y, sumdiv(y, z, z ) ) ); /* Joerg Arndt, Oct 07 2012 */
    

Formula

a(n) = Sum_{d|n} sigma(d)*tau(n/d). - Benoit Cloitre, Mar 03 2004
Multiplicative with a(p^e) = Sum_{k=0..e} binomial(e-k+2, e-k)*p^k.
Dirichlet g.f.: zeta(s-1)*zeta^3(s).
Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 432. - Vaclav Kotesovec, Nov 06 2018

A068978 Numbers k such that Sum_{d|k} tau(d)/d is an integer, where tau(x) = A000005(x).

Original entry on oeis.org

1, 2, 9, 18, 105, 210, 24375, 48750, 133848, 18780741, 18780965, 37561482, 37561930, 121486365, 169028685, 242972730, 338057370, 360988056, 676114740, 1120584213, 1285201500, 1352229480, 2241168426, 2776831200, 5352575025, 5408917920, 7437262140, 10705150050
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Comments

Also k such that k divides A007429(k).
Also k such that k divides A211780(k). - Jaroslav Krizek, Sep 28 2014
a(28) > 10^10. - Giovanni Resta, Jun 10 2013
a(33) > 5*10^10. - Hiroaki Yamanouchi, Oct 05 2014

Crossrefs

Programs

  • Mathematica
    t = {}; n = 0; While[n++ <= 20000000, If[Mod[Total[DivisorSigma[1, Divisors[n]]], n] == 0, AppendTo[t, n]]]; t (* Jayanta Basu, Apr 03 2013 *)
    f[p_, e_] := (p*(p^(e+1) - 1) - (p-1)*(e+1))/(p-1)^2; q[1] = True; q[k_] := Divisible[Times @@ f @@@ FactorInteger[k], k]; Select[Range[200000], q] (* Amiram Eldar, Apr 19 2025 *)
  • PARI
    for(n=1, 20000000, if(denominator( sumdiv(n,d, numdiv(d)/d)) ==1, print1(n,",")))
    
  • PARI
    isok(k) = {my(f = factor(k)); !(prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p*(p^(e+1) - 1) - (p-1)*(e+1))/(p-1)^2) % k);} \\ Amiram Eldar, Apr 19 2025

Extensions

More terms from Rick L. Shepherd, Jun 23 2002
a(12)-a(27) from Giovanni Resta, Jun 10 2013
a(28) from Hiroaki Yamanouchi, Oct 05 2014
Showing 1-10 of 61 results. Next