cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A153859 Triangle read by rows, A007318 * (A007476 * 0 ^(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 6, 8, 4, 1, 5, 10, 20, 20, 9, 1, 6, 15, 40, 60, 54, 23, 1, 7, 21, 70, 140, 189, 161, 65, 1, 8, 28, 112, 280, 504, 644, 520, 199, 1, 9, 36, 168, 504, 1134, 1932, 2340, 1791, 654, 1, 10, 45, 240, 840, 2268, 4830, 7800, 8955, 6540, 2296
Offset: 0

Views

Author

Gary W. Adamson, Jan 02 2009

Keywords

Comments

Row sums = A007476 starting (1, 2, 4, 9, 23, 65, 199,...).

Examples

			First few rows of the triangle =
1;
1, 1;
1, 2, 1;
1, 3, 3, 2;
1, 4, 6, 8, 4;
1, 5, 10, 20, 20, 9;
1, 6, 15, 40, 60, 54, 23;
1, 7, 21, 70, 140, 189, 161, 65;
1, 8, 28, 112, 280, 504, 644, 520, 199;
1, 9, 36, 168, 504, 1134, 1932, 2340, 1791, 654;
1, 10, 45, 240, 840, 2268, 4830, 7800, 8955, 6540, 2296;
...
		

Crossrefs

Formula

Triangle read by rows A007318 * (A007476 * 0^(n-k)) = binomial transform of an infinite lower triangular matrix with A007476 as the main diagonal: (1, 1, 1, 2, 4, 9, 23, 65, 199,...) and the rest zeros.

A000994 Shifts 2 places left under binomial transform.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, 18657, 77464, 337681, 1540381, 7330418, 36301105, 186688845, 995293580, 5491595645, 31310124067, 184199228226, 1116717966103, 6968515690273, 44710457783760, 294655920067105, 1992750830574681, 13817968813639426
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations of [n-1] that avoid both of the dashed patterns 1-23 and 3-12 and start with a descent (or are a singleton). For example, a(5)=5 counts 2143, 3142, 3214, 3241, 4321. - David Callan, Nov 21 2011

Examples

			A(x) = 1 + x^2/(1-x) + x^4/((1-x)^2*(1-2x)) + x^6/((1-x)^2*(1-2x)^2*(1-3x)) +...
		

References

  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A143983. Cf. A007476, A088022, A086880.

Programs

  • Haskell
    a000994 n = a000994_list !! n
    a000994_list = 1 : 0 : us where
      us = 1 : 1 : f 2 where
        f x = (1 + sum (zipWith (*) (map (a007318' x) [2..x]) us)) : f (x + 1)
    -- Reinhard Zumkeller, Jun 02 2013
  • Maple
    A000994 := proc(n) local k; option remember; if n <= 1 then 1 else 1 + add(binomial(n, k)*A000994(k - 2), k = 2 .. n); fi; end;
  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n, k]*a[k-2], {k, 2, n}]; Join[{1, 0}, Table[a[n], {n, 0, 24}]] (* Jean-François Alcover, Oct 11 2011, after Maple *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^(2*k)*(1-k*x)/prod(j=0, k, 1-j*x+x*O(x^n))^2), n) \\ Paul D. Hanna, Nov 02 2006
    

Formula

Since this satisfies a recurrence similar to that of the Bell numbers (A000110), the asymptotic behavior is presumably just as complicated - see A000110 for details.
However, a(n)/A000995(n) (e.g., 77464/63117) -> 1.228..., the constant in A051148 and A051149.
O.g.f.: A(x) = Sum_{n>=0} x^(2*n)*(1-n*x)/Product_{k=0..n} (1-k*x)^2. - Paul D. Hanna, Nov 02 2006
Let S(n) = Sum_{k >= 1} k^n/k!^2. Then S(n) = a(n)*S(0) + A000995(n)*S(1) is stated in A086880, where S(0) = 2.279585302... (see A070910) and S(1) = 1.590636854... (see A096789). Cf. A088022. - Peter Bala, Jan 27 2015
G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - x)) / (1 - x). - Ilya Gutkovskiy, Aug 09 2020

A351049 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 3*x)) / (1 - 3*x).

Original entry on oeis.org

1, 1, 1, 4, 16, 67, 307, 1585, 9235, 59548, 415564, 3094807, 24452785, 204611653, 1810429597, 16892405896, 165592138372, 1698918207403, 18184602679435, 202577753111653, 2344503929765023, 28146188358379120, 349996346545057288, 4501360727764475503
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2022

Keywords

Comments

Shifts 2 places left under 3rd-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 23; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 3 x)]/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 3^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 3^k * a(n-k-2).

A351050 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 4*x)) / (1 - 4*x).

Original entry on oeis.org

1, 1, 1, 5, 25, 129, 713, 4373, 30289, 235041, 1998001, 18226117, 176364969, 1803064033, 19463340729, 221691818005, 2658751147297, 33458500940993, 440140082161121, 6032572875160069, 85936355674437561, 1270176766188103105, 19453176663852208937
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2022

Keywords

Comments

Shifts 2 places left under 4th-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 4 x)]/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 4^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 4^k * a(n-k-2).

A351437 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - x)) / (1 - x)^2.

Original entry on oeis.org

1, 1, 1, 3, 7, 17, 47, 145, 481, 1691, 6295, 24805, 103095, 449805, 2052081, 9762699, 48334855, 248568321, 1325297879, 7312927481, 41694974649, 245288605059, 1487041552343, 9279329735685, 59537092965663, 392371097100373, 2653606218921673, 18400405626141667, 130712743774279015
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k + 1] a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 28}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-1,k+1) * a(k).

A210545 T(n,k) = number of arrays of n nonnegative integers with value i>0 appearing only after i-1 has appeared at least k times.

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 1, 1, 2, 15, 1, 1, 1, 4, 52, 1, 1, 1, 2, 9, 203, 1, 1, 1, 1, 4, 23, 877, 1, 1, 1, 1, 2, 8, 65, 4140, 1, 1, 1, 1, 1, 4, 17, 199, 21147, 1, 1, 1, 1, 1, 2, 8, 40, 654, 115975, 1, 1, 1, 1, 1, 1, 4, 16, 104, 2296, 678570, 1, 1, 1, 1, 1, 1, 2, 8, 33, 291, 8569, 4213597, 1, 1, 1, 1
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2012

Keywords

Examples

			Some solutions for n=13 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....0....0....1....0....0....1....1....0....1....1
..0....0....1....1....1....1....1....0....0....0....1....1....0....1....1....0
..1....0....0....1....1....1....0....1....1....0....0....0....0....1....1....0
..0....1....1....0....1....1....0....1....0....0....1....0....0....1....1....1
..1....1....0....0....1....2....1....1....0....1....1....0....0....1....2....1
..0....1....0....1....0....1....1....1....1....0....1....1....1....1....2....1
..0....1....0....2....1....0....0....1....1....0....2....0....1....1....2....1
..1....2....0....1....1....0....1....0....0....1....1....0....0....2....1....0
..0....2....1....0....2....0....0....0....2....1....2....1....0....0....0....1
Table starts
..........1.......1......1.....1....1...1...1
..........2.......1......1.....1....1...1...1
..........5.......2......1.....1....1...1...1
.........15.......4......2.....1....1...1...1
.........52.......9......4.....2....1...1...1
........203......23......8.....4....2...1...1
........877......65.....17.....8....4...2...1
.......4140.....199.....40....16....8...4...2
......21147.....654....104....33...16...8...4
.....115975....2296....291....73...32..16...8
.....678570....8569....857...177...65..32..16
....4213597...33825...2634...467..138..64..32
...27644437..140581...8455..1309..315.129..64
..190899322..612933..28424..3813..782.267.128
.1382958545.2795182.100117.11409.2090.582.257
		

Crossrefs

Cf. A000110 (column 1), A007476 (column 2), A210540 (column 3).

Formula

T(n,k)=1 if n<=k else Sum_{i=0..n-k} binomial(n-k,i)*T(i,k). Proved by R. J. Mathar in the Sequence Fans Mailing List.

A245163 T(n,k)=Number of length n 0..k arrays with new values introduced in order from both ends.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, 1, 1, 2, 4, 9, 16, 1, 1, 2, 4, 9, 23, 32, 1, 1, 2, 4, 9, 23, 64, 64, 1, 1, 2, 4, 9, 23, 65, 186, 128, 1, 1, 2, 4, 9, 23, 65, 199, 551, 256, 1, 1, 2, 4, 9, 23, 65, 199, 653, 1645, 512, 1, 1, 2, 4, 9, 23, 65, 199, 654, 2275, 4926, 1024, 1, 1, 2, 4, 9, 23
Offset: 1

Views

Author

R. H. Hardin, Jul 12 2014

Keywords

Comments

Table starts
.....1........1.........1.........1.........1.........1.........1.........1
.....1........1.........1.........1.........1.........1.........1.........1
.....2........2.........2.........2.........2.........2.........2.........2
.....4........4.........4.........4.........4.........4.........4.........4
.....8........9.........9.........9.........9.........9.........9.........9
....16.......23........23........23........23........23........23........23
....32.......64........65........65........65........65........65........65
....64......186.......199.......199.......199.......199.......199.......199
...128......551.......653.......654.......654.......654.......654.......654
...256.....1645......2275......2296......2296......2296......2296......2296
...512.....4926......8313......8568......8569......8569......8569......8569
..1024....14768.....31439.....33794.....33825.....33825.....33825.....33825
..2048....44293....121637....140039....140580....140581....140581....140581
..4096...132867....477307....605869....612890....612933....612933....612933
..8192...398588...1888721...2718531...2794159...2795181...2795182...2795182
.16384..1195750...7509799..12564289..13280627..13298407..13298464..13298464
.32768..3587235..29940861..59419764..65597882..65851100..65852872..65852873
.65536.10761689.119550419.285878342.335521900.338654554.338694406.338694479

Examples

			Some solutions for n=10 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....0....1....0....1....0....1....1....0....0....1....1....0
..1....0....2....0....1....2....1....0....0....2....2....0....1....1....2....1
..0....1....3....1....2....0....0....2....0....2....1....1....0....1....2....0
..1....2....0....0....0....1....2....3....0....3....1....2....1....1....2....1
..0....2....0....2....2....1....0....3....1....1....0....1....2....2....2....0
..0....1....2....1....2....1....0....2....1....3....2....1....1....1....1....2
..0....1....1....2....1....1....1....0....1....2....1....1....1....2....1....1
..1....1....1....1....1....1....0....1....0....1....1....0....1....1....1....1
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
		

Crossrefs

Column 1 is A000079(n-2)
Column 2 is A164039(n-2)
Diagonal is A007476

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 5*a(n-1) -7*a(n-2) +3*a(n-3) for n>4
k=3: a(n) = 10*a(n-1) -37*a(n-2) +64*a(n-3) -52*a(n-4) +16*a(n-5) for n>6
k=4: [order 7] for n>8
k=5: [order 9] for n>10
k=6: [order 11] for n>12
k=7: [order 13] for n>14

A344489 a(n) = 1 + Sum_{k=0..n-2} binomial(n-1,k) * a(k).

Original entry on oeis.org

1, 1, 2, 4, 11, 34, 122, 487, 2144, 10276, 53165, 294760, 1740950, 10899841, 72033470, 500664496, 3648211139, 27792215302, 220802394110, 1825428024367, 15672798590804, 139499676115312, 1285109772354941, 12235037442987028, 120220980122266010, 1217655627762149857
Offset: 0

Views

Author

Ilya Gutkovskiy, May 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n - 1, k] a[k] , {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
    nmax = 25; A[] = 0; Do[A[x] = (1 + x A[x/(1 - x)])/(1 - x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = (1 + x * A(x/(1 - x))) / (1 - x^2).

A351056 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 5*x)) / (1 - 5*x).

Original entry on oeis.org

1, 1, 1, 6, 36, 221, 1431, 10121, 80311, 718106, 7111976, 76201501, 868288401, 10438492181, 132166853861, 1763179150946, 24776241643056, 365971430085021, 5662954240306111, 91450179009971181, 1536249848608545451, 26782376261726525126, 483792982362049317676
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2022

Keywords

Comments

Shifts 2 places left under 5th-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 5 x)]/(1 - 5 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 5^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 5^k * a(n-k-2).

A351057 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 6*x)) / (1 - 6*x).

Original entry on oeis.org

1, 1, 1, 7, 49, 349, 2593, 20755, 184609, 1851289, 20735041, 253471039, 3310505425, 45630322741, 660993079393, 10065000586507, 161262522401089, 2717539655666353, 48053169836707969, 888408313419305719, 17108882037936283249, 342144175940842590349, 7089944927940141776545
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2022

Keywords

Comments

Shifts 2 places left under 6th-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - 6 x)]/(1 - 6 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 6^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]

Formula

a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 6^k * a(n-k-2).
Showing 1-10 of 29 results. Next