cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007477 Shifts 2 places left when convolved with itself.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 22, 44, 90, 187, 392, 832, 1778, 3831, 8304, 18104, 39666, 87296, 192896, 427778, 951808, 2124135, 4753476, 10664458, 23981698, 54045448, 122041844, 276101386, 625725936, 1420386363, 3229171828, 7351869690, 16760603722, 38258956928, 87437436916, 200057233386, 458223768512, 1050614664580
Offset: 0

Views

Author

Keywords

Comments

Words of length n in language defined by L = 1 + a + (L)L: L(0)=1, L(1)=a, L(2)=(), L(3)=(a)+()a, L(4)=(())+(a)a+()(), ...
Series reversion of x*A(x) is x*A082582(-x). - Michael Somos, Jul 22 2003
a(n) = number of Motzkin n-paths (A001006) in which no flatstep (F) is immediately followed by either an upstep (U) or a flatstep, in other words, each flatstep is either followed by a downstep (D) or ends the path. For example, a(4)=3 counts UDUD, UFDF, UUDD. - David Callan, Jun 07 2006
a(n) = number of Dyck (n+1)-paths (A000108) containing no UDUs and no subpaths of the form UUPDD where P is a nonempty Dyck path. For example, a(4)=3 counts UUUDDUUDDD, UUDDUUDDUD, UUUDDUDDUD. - David Callan, Sep 25 2006
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-1}*a_0 for n >= t. For example phi([1]) is the Catalan numbers A000108. The present sequence is (essentially) phi([0,1,1]). - Gary W. Adamson and R. J. Mathar, Oct 27 2008
The Kn21(n) triangle sums of A175136 lead to A007477(n+1), while the Kn22(n) = A007477(n+3)-1, Kn23(n) = A007477(n+5)-(4+n) and Kn3(n) = A007477(2*n+1) triangle sums of A175136 are related to the sequence given above. For the definition of these triangle sums see A180662. - Johannes W. Meijer, May 06 2011
For n>=2, a(n) gives number of possible, ways to parse an English sentence consisting of just n+1 copies of word "buffalo", with one particular "plausible" grammar. See the Wikipedia page and my Python source at OEIS Wiki. Whether these are really intelligible sentences is of course debatable. See A213705 for a more plausible example in the Finnish language. - Antti Karttunen, Sep 14 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007477 n = a007477_list !! n
    a007477_list = 1 : 1 : f [1,1] where
       f xs = y : f (y:xs) where y = sum $ zipWith (*) (tail xs) (reverse xs)
    -- Reinhard Zumkeller, Apr 09 2012
    
  • Maple
    A007477 := proc(n) option remember; local k; if n <= 1 then 1 else add(A007477(k)*A007477(n-k-2),k=0..n-2); fi; end;
    unprotect(phi);
    phi:=proc(t,u,M) local i,a;
    a:=Array(0..M); for i from 0 to t-1 do a[i]:=u[i+1]; od:
    for i from t to M do a[i]:=add(a[j]*a[i-1-j],j=0..i-1); od:
    [seq(a[i],i=0..M)]; end;
    phi(3,[0,1,1],30);
    # N. J. A. Sloane, Nov 02 2008
  • Mathematica
    f[x_] := (1 - Sqrt[1 - 4x^2 - 4x^3])/2; Drop[ CoefficientList[ Series[f[x], {x, 0, 32}], x], 2] (* Jean-François Alcover, Nov 22 2011, after Pari *)
    a[n_] := Sum[Binomial[2*k+2, n-k-2]*Binomial[n-k-2, k]/(k+1), {k, 0, n-2}]; a[0] = a[1] = 1; Array[a, 40, 0] (* Jean-François Alcover, Mar 04 2016, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n<2 then 1 else sum((binomial(2*k+2,n-k-2)*binomial(n-k-2,k))/(k+1),k,0,n-2); /* Vladimir Kruchinin, Nov 22 2014 */
  • PARI
    a(n)=polcoeff((1-sqrt(1-4*x^2-4*x^3+x^3*O(x^n)))/2,n+2)
    

Formula

a(n) = sum( a(k) * a(n-2-k) ), n>1.
G.f. A(x) satisfies the equation 0 = 1 + x - A(x) + (x*A(x))^2.
The g.f. satisfies A(x)-x^2*A(x)^2 = 1+x. - Ralf Stephan, Jun 30 2003
G.f.: (1-sqrt(1-4x^2-4x^3))/(2x^2).
G.f.: (1+x)c(x^2(1+x)) where c(x) is g.f. of A000108. - Paul Barry, May 31 2006
G.f.: 1/(1-x/(1-x^2/(1-x^2/(1-x/(1-x^2/(1-x^2/(1-x/(1-x^2/(1-x^2/(1-... (continued fraction). - Paul Barry, Jul 30 2010
D-finite with recurrence: (n+2)*a(n) +(n+1)*a(n-1) +4*(-n+1)*a(n-2) +2*(-4*n+9)*a(n-3) +2*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Dec 02 2012
a(n) = Sum_{k=0..n-2} binomial(2*k+2,n-k-2)*binomial(n-k-2,k)/(k+1), n>1, a(0)=1, a(1)=1. - Vladimir Kruchinin, Nov 22 2014
a(n) = Sum_{k=0..n-1} (-1)^(n-1-k)*binomial(n-1,k)*A082582(k+2), for n>0. - Thomas Baruchel, Jan 22 2015
a(n) ~ sqrt(3 - 4*r^2) * (4*r)^n * (1+r)^(n+1) / (sqrt(Pi)*n^(3/2)), where r = 0.41964337760708056627592628232664330021208937304879612338939... is the root of the equation 4*r^2*(1+r) = 1. - Vaclav Kotesovec, Jul 03 2021

Extensions

Additional comments from Michael Somos, Aug 03 2000