A007477 Shifts 2 places left when convolved with itself.
1, 1, 1, 2, 3, 6, 11, 22, 44, 90, 187, 392, 832, 1778, 3831, 8304, 18104, 39666, 87296, 192896, 427778, 951808, 2124135, 4753476, 10664458, 23981698, 54045448, 122041844, 276101386, 625725936, 1420386363, 3229171828, 7351869690, 16760603722, 38258956928, 87437436916, 200057233386, 458223768512, 1050614664580
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- J.-L. Baril and J.-M. Pallo, Motzkin subposet and Motzkin geodesics in Tamari lattices, 2013.
- J.-L. Baril and S. Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Carles Cardó, Growth and density in free magmas, arXiv:2401.07827 [math.CO], 2024.
- Justine Falque, Jean-Christophe Novelli, and Jean-Yves Thibon, Pinnacle sets revisited, arXiv:2106.05248 [math.CO], 2021.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 441
- Antti Karttunen, Python source code for parsing "Buffalo-variety" of sentences
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
- Wikipedia, Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo
Programs
-
Haskell
a007477 n = a007477_list !! n a007477_list = 1 : 1 : f [1,1] where f xs = y : f (y:xs) where y = sum $ zipWith (*) (tail xs) (reverse xs) -- Reinhard Zumkeller, Apr 09 2012
-
Maple
A007477 := proc(n) option remember; local k; if n <= 1 then 1 else add(A007477(k)*A007477(n-k-2),k=0..n-2); fi; end; unprotect(phi); phi:=proc(t,u,M) local i,a; a:=Array(0..M); for i from 0 to t-1 do a[i]:=u[i+1]; od: for i from t to M do a[i]:=add(a[j]*a[i-1-j],j=0..i-1); od: [seq(a[i],i=0..M)]; end; phi(3,[0,1,1],30); # N. J. A. Sloane, Nov 02 2008
-
Mathematica
f[x_] := (1 - Sqrt[1 - 4x^2 - 4x^3])/2; Drop[ CoefficientList[ Series[f[x], {x, 0, 32}], x], 2] (* Jean-François Alcover, Nov 22 2011, after Pari *) a[n_] := Sum[Binomial[2*k+2, n-k-2]*Binomial[n-k-2, k]/(k+1), {k, 0, n-2}]; a[0] = a[1] = 1; Array[a, 40, 0] (* Jean-François Alcover, Mar 04 2016, after Vladimir Kruchinin *)
-
Maxima
a(n):=if n<2 then 1 else sum((binomial(2*k+2,n-k-2)*binomial(n-k-2,k))/(k+1),k,0,n-2); /* Vladimir Kruchinin, Nov 22 2014 */
-
PARI
a(n)=polcoeff((1-sqrt(1-4*x^2-4*x^3+x^3*O(x^n)))/2,n+2)
Formula
a(n) = sum( a(k) * a(n-2-k) ), n>1.
G.f. A(x) satisfies the equation 0 = 1 + x - A(x) + (x*A(x))^2.
The g.f. satisfies A(x)-x^2*A(x)^2 = 1+x. - Ralf Stephan, Jun 30 2003
G.f.: (1-sqrt(1-4x^2-4x^3))/(2x^2).
G.f.: (1+x)c(x^2(1+x)) where c(x) is g.f. of A000108. - Paul Barry, May 31 2006
G.f.: 1/(1-x/(1-x^2/(1-x^2/(1-x/(1-x^2/(1-x^2/(1-x/(1-x^2/(1-x^2/(1-... (continued fraction). - Paul Barry, Jul 30 2010
D-finite with recurrence: (n+2)*a(n) +(n+1)*a(n-1) +4*(-n+1)*a(n-2) +2*(-4*n+9)*a(n-3) +2*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Dec 02 2012
a(n) = Sum_{k=0..n-2} binomial(2*k+2,n-k-2)*binomial(n-k-2,k)/(k+1), n>1, a(0)=1, a(1)=1. - Vladimir Kruchinin, Nov 22 2014
a(n) = Sum_{k=0..n-1} (-1)^(n-1-k)*binomial(n-1,k)*A082582(k+2), for n>0. - Thomas Baruchel, Jan 22 2015
a(n) ~ sqrt(3 - 4*r^2) * (4*r)^n * (1+r)^(n+1) / (sqrt(Pi)*n^(3/2)), where r = 0.41964337760708056627592628232664330021208937304879612338939... is the root of the equation 4*r^2*(1+r) = 1. - Vaclav Kotesovec, Jul 03 2021
Extensions
Additional comments from Michael Somos, Aug 03 2000
Comments