A213705
a(n)=n if n <= 3, otherwise a(n) = A007477(n-1) + A007477(n).
Original entry on oeis.org
1, 2, 3, 5, 9, 17, 33, 66, 134, 277, 579, 1224, 2610, 5609, 12135, 26408, 57770, 126962, 280192, 620674, 1379586, 3075943, 6877611, 15417934, 34646156, 78027146, 176087292, 398143230, 901827322, 2046112299, 4649558191, 10581041518, 24112473412, 55019560650, 125696393844, 287494670302
Offset: 1
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 17*x^6 + 33*x^7 + ... - _Michael Somos_, Nov 07 2019
-
b:= n-> coeff(series(RootOf(A=(A*x)^2+x+1, A), x, n+1), x, n):
a:= n-> `if`(n<2, n, b(n-1) +b(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Sep 14 2012
-
(* b = A007477 *) b[n_] := Sum[Binomial[2*k+2, n-k-2]*Binomial[n-k-2, k]/(k + 1), {k, 0, n-2}]; a[n_] := b[n-1] + b[n]; a[1] = 1; a[2] = 2; Array[a, 40] (* Jean-François Alcover, Mar 04 2016 *)
-
b(n) = sum(k=0, n - 2, binomial(2*k + 2, n - k - 2)*binomial(n - k - 2, k)/(k + 1));
a(n) = if(n<3, n, b(n - 1) + b(n)); \\ Indranil Ghosh, Apr 11 2017
-
{a(n) = polcoeff( (1 + x) * (1 - 2*x^2 - sqrt(1 - 4*x^2 - 4*x^3 + x^3 * O(x^n))) / (2*x^2), n)}; /* Michael Somos, Nov 07 2019 */
-
from sympy import binomial
def b(n): return sum([binomial(2*k + 2, n - k - 2)*binomial(n - k - 2, k)//(k + 1) for k in range(n - 1)])
def a(n): return n if n<3 else b(n - 1) + b(n)
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Apr 11 2017
-
: (define (A213705 n) (if (< n 2) n (+ (A007477 (- n 1)) (A007477 n))))
A082582
Expansion of (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4)) / (2*x) in powers of x.
Original entry on oeis.org
1, 1, 1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, 20705, 62642, 190987, 586219, 1810011, 5617914, 17518463, 54857506, 172431935, 543861219, 1720737981, 5459867166, 17369553427, 55391735455, 177040109419, 567019562429, 1819536774089
Offset: 0
1 + x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 35*x^6 + 97*x^7 + 275*x^8 + ...
a(3)=2 because the only Dyck paths of semilength 3 with no UUDD in them are UDUDUD and UUDUDD (the nonqualifying ones being UDUUDD, UUDDUD and UUUDDD). - _Emeric Deutsch_, Jan 27 2003
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 11.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023. See pp. 3, 13.
- Aubrey Blecher, Charlotte Brennan, and Arnold Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.
- Miklos Bona and Elijah DeJonge, Pattern avoiding permutations and involutions with a unique longest increasing subsequence, arXiv:2003.10640 [math.CO], 2020.
- Mireille Bousquet-Mélou and Andrew Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
- Ralph L. Childress, Recursive Prime Factorizations: Dyck Words as Numbers, arXiv:2102.02777 [cs.FL], 2021.
- Emeric Deutsch and Sergi Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv:1609.00088 [math.CO], September 2016.
- Chris Dyer, Gábor Melis, and Phil Blunsom, A Critical Analysis of Biased Parsers in Unsupervised Parsing, arXiv:1909.09428 [cs.CL], 2019.
- Juan B. Gil and Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018-2019.
- Qing Lin Lu, Skew Motzkin paths, Acta Mathematica Sinica, English Series, 33(5) (2017), 657-667.
- Toufik Mansour and Mark Shattuck, On ascent sequences avoiding 021 and a pattern of length four, arXiv:2507.17947 [math.CO], 2025. See p. 19.
- Helmut Prodinger, Cornerless, peakless, valleyless Motzkin paths (regular and skew) and applications to bargraphs, arXiv:2501.13645 [math.CO], 2025. See p. 11.
- Robin D. P. Zhou, Pattern avoidance in revised ascent sequences, arXiv:2505.05171 [math.CO], 2025. See pp. 4, 22.
Apart from initial term, same as
A025242.
See
A086581 for Dyck paths avoiding DDUU.
-
a082582 n = a082582_list !! n
a082582_list = 1 : 1 : f [1,1] where
f xs'@(x:_:xs) = y : f (y : xs') where
y = x + sum (zipWith (*) xs' $ reverse xs)
-- Reinhard Zumkeller, Nov 13 2012
-
f:= gfun:-rectoproc({(n-1)*a(n)+(2*n+4)*a(n+2)+(-14-4*n)*a(n+3)+(5+n)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 2},a(n),remember):
map(f,[$0..100]); # Robert Israel, May 20 2016
-
a[0]=1;a[n_Integer]:=a[n]=a[n-1]+Sum[a[k]*a[n-1-k],{k,2,n-1}];Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
a[ n_] := SeriesCoefficient[ 2 / (1 + x^2 + Sqrt[1 - 4 x + 2 x^2 + x^4]), {x, 0, n}] (* Michael Somos, Jul 01 2011 *)
a[n_] := Sum[HypergeometricPFQ[{-k, 3 + k, k - n}, {1, 2}, 1], {k, 0, n}];
Join[{1, 1}, Table[a[n], {n, 0, 26}]] (* Peter Luschny, Oct 18 2020 *)
-
a(n):=sum(sum((binomial(n-k-2,j)*binomial(k,j)*binomial(k+j+2,j))/(j+1),j,0,n-k-1),k,0,n-2); /* Vladimir Kruchinin, Oct 18 2020 */
-
{a(n) = polcoeff( (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4 + x^2 * O(x^n))) / 2, n+1)} /* Michael Somos, Jul 22 2003 */
-
{a(n) = if( n<0, 0, polcoeff( 2 /(1 + x^2 + sqrt( 1 - 4*x + 2*x^2 + x^4 + x * O(x^n))),n))} /* Michael Somos, Jul 01 2011 */
-
{a(n) = local(A); if( n<0, 0, A = O(x); for( k = 0, n, A = 1 / (1 + x^2 - x * A)); polcoeff( A, n))} /* Michael Somos, Mar 28 2011 */
Original entry on oeis.org
1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, 31160, 93802, 284789, 871008, 2681019, 8298933, 25817396, 80674902, 253106837, 796968056, 2517706037, 7977573203, 25347126630, 80738862085, 257778971504, 824798533933
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 22*x^4 + 57*x^5 + 154*x^6 + 429*x^7 + ...
with A(x)^2 = 1 + 4*x + 12*x^2 + 34*x^3 + 96*x^4 + 274*x^5 + 793*x^6 + ...
where A(x) = 1 + x*(2-x)*A(x) + x^2*(1-x)*A(x)^2.
The logarithm of the g.f. begins:
log(A(x)) = (1 + (1-x))*x + (1 + 2^2*(1-x) + (1-x)^2)*x^2/2 +
(1 + 3^2*(1-x) + 3^2*(1-x)^2 + (1-x)^3)*x^3/3 +
(1 + 4^2*(1-x) + 6^2*(1-x)^2 + 4^2*(1-x)^3 + (1-x)^4)*x^4/4 +
(1 + 5^2*(1-x) + 10^2*(1-x)^2 + 10^2*(1-x)^3 + 5^2*(1-x)^4 + (1-x)^5)*x^5/5 + ...
Explicitly,
log(A(x)) = 2*x + 4*x^2/2 + 11*x^3/3 + 32*x^4/4 + 97*x^5/5 + 301*x^6/6 + 947*x^7/7 + 3008*x^8/8 + 9623*x^9/9 + 30959*x^10/10 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Permutations avoiding a simsun pattern, The Electronic Journal of Combinatorics (2020) Vol. 27, Issue 3, P3.45. (See a_n in Theorem 4.)
- Jean-Luc Baril, Daniela Colmenares, José L. Ramírez, Emmanuel D. Silva, Lina M. Simbaqueba, and Diana A. Toquica, Consecutive pattern-avoidance in Catalan words according to the last symbol, Univ. Bourgogne (France 2023).
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023. See pp. 3, 8.
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 10.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018. See p. 8.
- Maciej Bendkowski, Quantitative aspects and generation of random lambda and combinatory logic terms, Ph.D. Thesis, Jagiellonian University, Kraków, 2017.
- Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc, Combinatorics of λ-terms: a natural approach, arXiv:1609.08106 [cs.LO], 2016.
- Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc, A Natural Counting of Lambda Terms, arXiv preprint arXiv:1506.02367 [cs.LO], 2015.
- Maciej Bendkowski, K. Grygiel, and P. Tarau, Random generation of closed simply-typed lambda-terms: a synergy between logic programming and Boltzmann samplers, arXiv preprint arXiv:1612.07682 [cs.LO], 2016-2017.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019. See p. 12.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020. See p. 5.
- Juan B. Gil and Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018. See pp. 4, 6.
- Katarzyna Grygiel and Pierre Lescanne, A natural counting of lambda terms, Preprint 2015.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- Toufik Mansour, Statistics on Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.
- A. Sapounakis et al., Ordered trees and the inorder transversal, Disc. Math., 306 (2006), 1732-1741.
- Robin D. P. Zhou, Pattern avoidance in revised ascent sequences, arXiv:2505.05171 [math.CO], 2025. See pp. 4, 20.
-
a := n -> add((-1)^i*hypergeom([(i+1)/2, i/2+1, i-n-1], [1, 2], -4), i=0..n+1):
seq(simplify(a(n)), n=0..26); # Peter Luschny, May 03 2018
-
CoefficientList[Series[(1 - x - Sqrt[(1 - x)^2 - 4 x^2/(1 - x)])/(2 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
-
{a(n)=local(X=x+x*O(x^n)); polcoeff(2/(1-X)/(1-X+sqrt((1-X)^2-4*X^2/(1-X))),n,x)}
-
{a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*(1-x)^(m-k) + x*O(x^n)))),n)} \\ Paul D. Hanna, Sep 12 2012
More terms from I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006
A175136
Triangle T(n,k) read by rows: number of LCO forests of size n with k leaves, 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 17, 12, 4, 1, 16, 46, 44, 20, 5, 1, 32, 120, 150, 90, 30, 6, 1, 64, 304, 482, 370, 160, 42, 7, 1, 128, 752, 1476, 1412, 770, 259, 56, 8, 1, 256, 1824, 4344, 5068, 3402, 1428, 392, 72, 9, 1, 512, 4352, 12368, 17285, 14000, 7168, 2436
Offset: 1
Triangle starts
1;
1, 1;
2, 2, 1;
4, 6, 3, 1;
8, 17, 12, 4, 1;
16, 46, 44, 20, 5, 1;
32, 120, 150, 90, 30, 6, 1;
64, 304, 482, 370, 160, 42, 7, 1;
128, 752, 1476, 1412, 770, 259, 56, 8, 1;
Triangle (0,1,1,0,1,1,0,...) DELTA (1,0,0,1,0,0,1,...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 4, 6, 3, 1;
0, 8, 17, 12, 4, 1; ... - _Philippe Deléham_, Oct 29 2011
- David Callan, A bijection on Dyck paths and its cycle structure, El. J. Combinat. 14 (2007) # R28.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
- David Callan and Emeric Deutsch, The Run Transform, arXiv:1112.3639 [math.CO], 2011.
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.
-
lco := proc(siz,leav) (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/2/x ; coeftayl(%,x=0,siz ) ; coeftayl(%,y=0,leav ) ; end proc: seq(seq(lco(n,k),k=1..n),n=1..9) ;
T := proc(n, k): add(A091894(n-k, k1)*binomial(n-k1-1, n-k), k1=0..floor((n-k)/2)) end: A091894 := proc(n, k): if n=0 and k=0 then 1 elif n=0 then 0 else 2^(n-2*k-1)* binomial(n-1, 2*k) * binomial(2*k, k)/(k+1) fi end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, May 06 2011, revised Nov 23 2012
-
A091894[n_, k_] := 2^(n - 2*k - 1)*Binomial[n - 1, 2*k]*(Binomial[2*k, k]/(k + 1)); t[n_, k_] := Sum[A091894[n - k, k1]*Binomial [n - k1 - 1, n - k], {k1, 0, (n - k)/2}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten(* Jean-François Alcover, Jun 13 2013, after Johannes W. Meijer *)
A307971
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4*A(x)^2.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 4, 5, 8, 13, 20, 29, 44, 70, 112, 175, 272, 430, 690, 1107, 1766, 2822, 4542, 7347, 11886, 19222, 31150, 50647, 82518, 134542, 219542, 358808, 587430, 962898, 1579686, 2593967, 4264292, 7017800, 11559548, 19055420, 31437318, 51908076, 85775954, 141841207
Offset: 0
G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 8*x^9 + 13*x^10 + ...
-
a:= proc(n) option remember; `if`(n<4, 1,
add(a(j)*a(n-4-j), j=0..n-4))
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 08 2019
-
terms = 44; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 A[x]^2 + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = Sum[a[k] a[n - k - 4], {k, 0, n - 4}]; a[0] = a[1] = a[2] = a[3] = 1; Table[a[n], {n, 0, 44}]
CoefficientList[Series[(1 - Sqrt[1 - 4*x^4 - 4*x^5 - 4*x^6 - 4*x^7])/(2*x^4), {x, 0, 40}], x] (* Vaclav Kotesovec, Sep 27 2023 *)
A307972
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5*A(x)^2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 14, 21, 30, 41, 58, 86, 130, 195, 286, 416, 612, 915, 1380, 2076, 3102, 4627, 6932, 10452, 15818, 23931, 36148, 54600, 82642, 125435, 190724, 290116, 441282, 671512, 1023052, 1560780, 2383578, 3642117, 5567202, 8514254, 13031192, 19960712
Offset: 0
G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + 6*x^10 + ...
-
a:= proc(n) option remember; `if`(n<5, 1,
add(a(j)*a(n-5-j), j=0..n-5))
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 08 2019
-
terms = 47; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 + x^5 A[x]^2 + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = Sum[a[k] a[n - k - 5], {k, 0, n - 5}]; a[0] = a[1] = a[2] = a[3] = a[4] = 1; Table[a[n], {n, 0, 47}]
-
@CachedFunction
def a(n): # a = A307972
if (n<5): return 1
else: return sum(a(k)*a(n-k-5) for k in range(n-4))
[a(n) for n in range(51)] # G. C. Greubel, Nov 26 2022
A025242
Generalized Catalan numbers A(x)^2 -(1+x)^2*A(x) +x*(2+x+x^2) =0.
Original entry on oeis.org
2, 1, 1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, 20705, 62642, 190987, 586219, 1810011, 5617914, 17518463, 54857506, 172431935, 543861219, 1720737981, 5459867166, 17369553427, 55391735455, 177040109419, 567019562429, 1819536774089
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 10.
- Petr Gregor, Torsten Mütze, and Namrata, Combinatorial generation via permutation languages. VI. Binary trees, arXiv:2306.08420 [cs.DM], 2023.
- Petr Gregor, Torsten Mütze, and Namrata, Pattern-Avoiding Binary Trees-Generation, Counting, and Bijections, Leibniz Int'l Proc. Informatics (LIPIcs), 34th Int'l Symp. Algor. Comp. (ISAAC 2023). See p. 33.13.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- Jia Huang and Erkko Lehtonen, Associative-commutative spectra for some varieties of groupoids, arXiv:2401.15786 [math.CO], 2024. See p. 18.
- Vít Jelínek, Toufik Mansour and Mark Shattuck, On multiple pattern avoiding set partitions, Adv. Appl. Math. 50 (2) (2013) 292-326, Theorem 4.1, without the leading 2.
- Yvan Le Borgne, Counting Upper Interactions in Dyck Paths, Séminaire Lotharingien de Combinatoire, Vol. 54, B54f (2006), 16 pp.
- Rupert Li, Vincular Pattern Avoidance on Cyclic Permutations, arXiv:2107.12353 [math.CO], 2021.
- Toufik Mansour, Restricted 1-3-2 permutations and generalized patterns, arXiv:math/0110039 [math.CO], 2001.
- Toufik Mansour, Restricted 1-3-2 permutations and generalized patterns, Annals of Combin., 6 (2002), 65-76. (Example 2.10.)
- Toufik Mansour and Mark Shattuck, Restricted partitions and generalized Catalan numbers, PU. M. A., Vol. (2011), No. 2, pp. 239-251. - From _N. J. A. Sloane_, Oct 13 2012
- Lara Pudwell, Pattern-avoiding ascent sequences, Slides from a talk, 2015.
- Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, Slides, Permutation Patterns 2014, East Tennessee State University Jul 07 2014.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
-
a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-1-k ], {k, 2, n-1} ];
-
a(n)=polcoeff((1+2*x+x^2-sqrt(1-4*x+2*x^2+x^4+x*O(x^n)))/2,n)
A115178
Expansion of c(x^2+x^3), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 0, 1, 1, 2, 4, 7, 15, 29, 61, 126, 266, 566, 1212, 2619, 5685, 12419, 27247, 60049, 132847, 294931, 656877, 1467258, 3286218, 7378240, 16603458, 37441990, 84599854, 191501532, 434224404, 986161959, 2243009869, 5108859821
Offset: 0
1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 15*x^7 + 29*x^8 + 61*x^9 + ...
-
Table[Sum[Binomial[k, n - 2*k]*CatalanNumber[k], {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Feb 03 2017 *)
-
{a(n) = local(A); A = O(x^0); for( k=0, n\5, A = 1 / (1 - x^2 / (1 - x / (1 - x^2 * A)))); polcoeff( A, n)} /* Michael Somos, May 12 2012 */
A307970
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3*A(x)^2.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 7, 12, 19, 32, 56, 96, 165, 290, 512, 902, 1601, 2862, 5124, 9198, 16585, 29990, 54336, 98702, 179742, 327942, 599432, 1097756, 2013737, 3699596, 6806866, 12541518, 23137270, 42736850, 79031394, 146309968, 271142469, 502978944, 933921458, 1735634266
Offset: 0
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 12*x^8 + 19*x^9 + 32*x^10 + ...
-
a:= proc(n) option remember; `if`(n<3, 1,
add(a(j)*a(n-3-j), j=0..n-3))
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 08 2019
-
terms = 40; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 A[x]^2 + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = Sum[a[k] a[n - k - 3], {k, 0, n - 3}]; a[0] = a[1] = a[2] = 1; Table[a[n], {n, 0, 40}]
A354733
a(0) = a(1) = 1; a(n) = 2 * Sum_{k=0..n-2} a(k) * a(n-k-2).
Original entry on oeis.org
1, 1, 2, 4, 10, 24, 64, 168, 464, 1280, 3624, 10304, 29728, 86240, 252480, 743040, 2200640, 6547200, 19571200, 58727680, 176883200, 534476800, 1619912320, 4923070464, 14999764480, 45807916544, 140196076544, 429931051008, 1320905583616, 4065358827520
Offset: 0
-
a[0] = a[1] = 1; a[n_] := a[n] = 2 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 29}]
nmax = 29; CoefficientList[Series[(1 - Sqrt[1 - 8 x^2 (1 + x)])/(4 x^2), {x, 0, nmax}], x]
-
a(n) = sum(k=0, n\2, 2^k*binomial(k+1, n-2*k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Nov 05 2023
Showing 1-10 of 27 results.
Comments