A082582
Expansion of (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4)) / (2*x) in powers of x.
Original entry on oeis.org
1, 1, 1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, 20705, 62642, 190987, 586219, 1810011, 5617914, 17518463, 54857506, 172431935, 543861219, 1720737981, 5459867166, 17369553427, 55391735455, 177040109419, 567019562429, 1819536774089
Offset: 0
1 + x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 35*x^6 + 97*x^7 + 275*x^8 + ...
a(3)=2 because the only Dyck paths of semilength 3 with no UUDD in them are UDUDUD and UUDUDD (the nonqualifying ones being UDUUDD, UUDDUD and UUUDDD). - _Emeric Deutsch_, Jan 27 2003
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 11.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023. See pp. 3, 13.
- Aubrey Blecher, Charlotte Brennan, and Arnold Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.
- Miklos Bona and Elijah DeJonge, Pattern avoiding permutations and involutions with a unique longest increasing subsequence, arXiv:2003.10640 [math.CO], 2020.
- Mireille Bousquet-Mélou and Andrew Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
- Ralph L. Childress, Recursive Prime Factorizations: Dyck Words as Numbers, arXiv:2102.02777 [cs.FL], 2021.
- Emeric Deutsch and Sergi Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv:1609.00088 [math.CO], September 2016.
- Chris Dyer, Gábor Melis, and Phil Blunsom, A Critical Analysis of Biased Parsers in Unsupervised Parsing, arXiv:1909.09428 [cs.CL], 2019.
- Juan B. Gil and Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018-2019.
- Qing Lin Lu, Skew Motzkin paths, Acta Mathematica Sinica, English Series, 33(5) (2017), 657-667.
- Toufik Mansour and Mark Shattuck, On ascent sequences avoiding 021 and a pattern of length four, arXiv:2507.17947 [math.CO], 2025. See p. 19.
- Helmut Prodinger, Cornerless, peakless, valleyless Motzkin paths (regular and skew) and applications to bargraphs, arXiv:2501.13645 [math.CO], 2025. See p. 11.
- Robin D. P. Zhou, Pattern avoidance in revised ascent sequences, arXiv:2505.05171 [math.CO], 2025. See pp. 4, 22.
Apart from initial term, same as
A025242.
See
A086581 for Dyck paths avoiding DDUU.
-
a082582 n = a082582_list !! n
a082582_list = 1 : 1 : f [1,1] where
f xs'@(x:_:xs) = y : f (y : xs') where
y = x + sum (zipWith (*) xs' $ reverse xs)
-- Reinhard Zumkeller, Nov 13 2012
-
f:= gfun:-rectoproc({(n-1)*a(n)+(2*n+4)*a(n+2)+(-14-4*n)*a(n+3)+(5+n)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 2},a(n),remember):
map(f,[$0..100]); # Robert Israel, May 20 2016
-
a[0]=1;a[n_Integer]:=a[n]=a[n-1]+Sum[a[k]*a[n-1-k],{k,2,n-1}];Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
a[ n_] := SeriesCoefficient[ 2 / (1 + x^2 + Sqrt[1 - 4 x + 2 x^2 + x^4]), {x, 0, n}] (* Michael Somos, Jul 01 2011 *)
a[n_] := Sum[HypergeometricPFQ[{-k, 3 + k, k - n}, {1, 2}, 1], {k, 0, n}];
Join[{1, 1}, Table[a[n], {n, 0, 26}]] (* Peter Luschny, Oct 18 2020 *)
-
a(n):=sum(sum((binomial(n-k-2,j)*binomial(k,j)*binomial(k+j+2,j))/(j+1),j,0,n-k-1),k,0,n-2); /* Vladimir Kruchinin, Oct 18 2020 */
-
{a(n) = polcoeff( (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4 + x^2 * O(x^n))) / 2, n+1)} /* Michael Somos, Jul 22 2003 */
-
{a(n) = if( n<0, 0, polcoeff( 2 /(1 + x^2 + sqrt( 1 - 4*x + 2*x^2 + x^4 + x * O(x^n))),n))} /* Michael Somos, Jul 01 2011 */
-
{a(n) = local(A); if( n<0, 0, A = O(x); for( k = 0, n, A = 1 / (1 + x^2 - x * A)); polcoeff( A, n))} /* Michael Somos, Mar 28 2011 */
Original entry on oeis.org
1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, 31160, 93802, 284789, 871008, 2681019, 8298933, 25817396, 80674902, 253106837, 796968056, 2517706037, 7977573203, 25347126630, 80738862085, 257778971504, 824798533933
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 22*x^4 + 57*x^5 + 154*x^6 + 429*x^7 + ...
with A(x)^2 = 1 + 4*x + 12*x^2 + 34*x^3 + 96*x^4 + 274*x^5 + 793*x^6 + ...
where A(x) = 1 + x*(2-x)*A(x) + x^2*(1-x)*A(x)^2.
The logarithm of the g.f. begins:
log(A(x)) = (1 + (1-x))*x + (1 + 2^2*(1-x) + (1-x)^2)*x^2/2 +
(1 + 3^2*(1-x) + 3^2*(1-x)^2 + (1-x)^3)*x^3/3 +
(1 + 4^2*(1-x) + 6^2*(1-x)^2 + 4^2*(1-x)^3 + (1-x)^4)*x^4/4 +
(1 + 5^2*(1-x) + 10^2*(1-x)^2 + 10^2*(1-x)^3 + 5^2*(1-x)^4 + (1-x)^5)*x^5/5 + ...
Explicitly,
log(A(x)) = 2*x + 4*x^2/2 + 11*x^3/3 + 32*x^4/4 + 97*x^5/5 + 301*x^6/6 + 947*x^7/7 + 3008*x^8/8 + 9623*x^9/9 + 30959*x^10/10 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Permutations avoiding a simsun pattern, The Electronic Journal of Combinatorics (2020) Vol. 27, Issue 3, P3.45. (See a_n in Theorem 4.)
- Jean-Luc Baril, Daniela Colmenares, José L. Ramírez, Emmanuel D. Silva, Lina M. Simbaqueba, and Diana A. Toquica, Consecutive pattern-avoidance in Catalan words according to the last symbol, Univ. Bourgogne (France 2023).
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023. See pp. 3, 8.
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 10.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018. See p. 8.
- Maciej Bendkowski, Quantitative aspects and generation of random lambda and combinatory logic terms, Ph.D. Thesis, Jagiellonian University, Kraków, 2017.
- Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc, Combinatorics of λ-terms: a natural approach, arXiv:1609.08106 [cs.LO], 2016.
- Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc, A Natural Counting of Lambda Terms, arXiv preprint arXiv:1506.02367 [cs.LO], 2015.
- Maciej Bendkowski, K. Grygiel, and P. Tarau, Random generation of closed simply-typed lambda-terms: a synergy between logic programming and Boltzmann samplers, arXiv preprint arXiv:1612.07682 [cs.LO], 2016-2017.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019. See p. 12.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020. See p. 5.
- Juan B. Gil and Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018. See pp. 4, 6.
- Katarzyna Grygiel and Pierre Lescanne, A natural counting of lambda terms, Preprint 2015.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- Toufik Mansour, Statistics on Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.
- A. Sapounakis et al., Ordered trees and the inorder transversal, Disc. Math., 306 (2006), 1732-1741.
- Robin D. P. Zhou, Pattern avoidance in revised ascent sequences, arXiv:2505.05171 [math.CO], 2025. See pp. 4, 20.
-
a := n -> add((-1)^i*hypergeom([(i+1)/2, i/2+1, i-n-1], [1, 2], -4), i=0..n+1):
seq(simplify(a(n)), n=0..26); # Peter Luschny, May 03 2018
-
CoefficientList[Series[(1 - x - Sqrt[(1 - x)^2 - 4 x^2/(1 - x)])/(2 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
-
{a(n)=local(X=x+x*O(x^n)); polcoeff(2/(1-X)/(1-X+sqrt((1-X)^2-4*X^2/(1-X))),n,x)}
-
{a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*(1-x)^(m-k) + x*O(x^n)))),n)} \\ Paul D. Hanna, Sep 12 2012
More terms from I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006
A086581
Number of Dyck paths of semilength n with no DDUU.
Original entry on oeis.org
1, 1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, 20705, 62642, 190987, 586219, 1810011, 5617914, 17518463, 54857506, 172431935, 543861219, 1720737981, 5459867166, 17369553427, 55391735455, 177040109419, 567019562429, 1819536774089
Offset: 0
a(4) = 13 because of the 14 Dyck 4-paths only UUDDUUDD contains DDUU.
- Robert Israel, Table of n, a(n) for n = 0..1709
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
- Lu, Qing Lin Skew Motzkin paths Acta Math. Sin., Engl. Ser. 33, No. 5, 657-667 (2017) sequence s_n
- T. Mansour, Restricted 1-3-2 permutations and generalized patterns, arXiv:math/0110039 [math.CO], 2001.
- T. Mansour, Restricted 1-3-2 permutations and generalized patterns, Annals of Combin., 6 (2002), 65-76. (Example 2.10.)
- L. Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. - From _N. J. A. Sloane_, Jan 03 2013
- A. Sapounakis, I. Tasoulas and P. Tsikouras, On the Dominance Partial Ordering of Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.5.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
-
F:= gfun:-rectoproc({(n+2)*a(n) +(n+3)*a(n-1) +2*(-9*n+4)*a(n-2) +10*(n-2)*a(n-3) +(n-4)*a(n-4) +5*(n-5)*a(n-5)=0, seq(a(n)=[1,1,2,5,13][n+1],n=0..4)},a(n),remember):
map(F, [$0..30]); # Robert Israel, Jun 29 2015
-
CoefficientList[ Series[(1 - 2 x + x^2 - Sqrt[1 - 4 x + 2 x^2 + x^4])/(2 x^2), {x, 0, 27}], x] (* Robert G. Wilson v, Mar 25 2011 *)
-
{a(n) = polcoeff((1 - 2*x + x^2 - sqrt(1 - 4*x + 2*x^2 + x^4 + x^3 * O(x^n))) / 2, n+2)}
-
a(n)=1+sum(k=0,n,sum(i=0,k,binomial(n-1,k)*binomial(2*i+2,i)*binomial(i+2,k-2*i-1)/(i+1))) \\ Thomas Baruchel, Jan 19 2015
A098978
Triangle read by rows: T(n,k) is number of Dyck n-paths with k UUDDs, 0 <= k <= n/2.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 8, 1, 13, 23, 6, 35, 69, 27, 1, 97, 212, 110, 10, 275, 662, 426, 66, 1, 794, 2091, 1602, 360, 15, 2327, 6661, 5912, 1760, 135, 1, 6905, 21359, 21534, 8022, 945, 21, 20705, 68850, 77685, 34840, 5685, 246, 1, 62642, 222892, 278192, 146092
Offset: 0
Table begins
\ k 0, 1, 2, ...
n
0 | 1;
1 | 1;
2 | 1, 1;
3 | 2, 3;
4 | 5, 8, 1;
5 | 13, 23, 6;
6 | 35, 69, 27, 1;
7 | 97, 212, 110, 10;
8 |275, 662, 426, 66, 1;
T(3,1) = 3 because each of UUUDDD, UDUUDD, UUDDUD has one UUDD.
- R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps. - Emeric Deutsch, Jan 06 2005
- Alois P. Heinz, Rows n = 0..200, flattened
- Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924. - From _N. J. A. Sloane_, May 05 2012
- Index entries for sequences related to Łukasiewicz
Column k=0 is
A025242 (apart from first term).
-
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y+1, [2, 3, 3, 2][t])
+b(x-1, y-1, [1, 1, 4, 1][t])*`if`(t=4, z, 1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Jun 10 2014
-
T[n_, k_] := Binomial[n-k, k] Binomial[2n-3k, n-k-1] HypergeometricPFQ[{k -n/2-1/2, k-n/2, k-n/2, k-n/2+1/2}, {k-2n/3, k-2n/3+1/3, k-2n/3+2/3}, 16/27]/(n-k); T[0, 0] = 1; Flatten[Table[T[n, k], {n, 0, 15}, {k, 0, n/2}]] (* Jean-François Alcover, Dec 21 2016, after 2nd formula *)
A346660
Number of cyclic patterns of length n that avoid the vincular pattern 23-1-4.
Original entry on oeis.org
1, 1, 1, 2, 5, 14, 42, 133, 442, 1537, 5583, 21165, 83707, 345324, 1485687, 6663354, 31134078, 151408319, 765462514, 4017644518, 21860398111, 123120413119, 716701884408, 4305828784896, 26661920519485, 169937265101628, 1113616036893636, 7494786443901137
Offset: 0
A346661
Number of cyclic patterns of length n that avoid the vincular pattern 23-4-1.
Original entry on oeis.org
1, 1, 2, 5, 15, 50, 180, 690, 2792, 11857, 52633, 243455, 1170525, 5837934, 30151474, 161021581, 888001485, 5051014786, 29600662480, 178541105770, 1107321666920, 7055339825171, 46142654894331, 309513540865544, 2127744119042216, 14979904453920111, 107932371558460341, 795363217306369817, 5990768203554158167, 46094392105916344968, 362092868720288824992
Offset: 0
- Rupert Li, Vincular Pattern Avoidance on Cyclic Permutations, arXiv:2107.12353 [math.CO], 2021.
- Toufik Mansour and Mark Shattuck, Enumerating circular permutations avoiding the vincular pattern 23 4 1, arXiv:2111.04211 [math.CO], 2021.
- Toufik Mansour and Mark Shattuck, On a question of Li concerning an uncounted class of circular permutations, The Australasian Journal of Combinatorics, volume 83 part 1, 2022, pp. 176-195.
More terms from
Vaclav Kotesovec, Nov 09 2021, computed by Toufik Mansour and Mark Shattuck
Showing 1-6 of 6 results.
Comments