A058297 Continued fraction for Wallis' number (A007493).
2, 10, 1, 1, 2, 1, 3, 1, 1, 12, 3, 5, 1, 1, 2, 1, 6, 1, 11, 4, 42, 1, 2, 1, 1, 1, 1, 1, 2, 1, 16, 1, 1, 1, 1, 6, 2, 5, 22, 6, 31, 2, 1, 4, 17, 2, 1, 5, 2, 4, 5, 2, 74, 45, 1, 24, 3, 1, 13, 1, 18, 2, 8, 1, 1, 5, 2, 1, 1, 2, 10, 1, 6, 6, 1, 1, 7, 21, 1, 1, 2, 2, 8, 3, 2, 2, 4, 9, 7, 4, 106, 3, 2, 1, 3, 2
Offset: 0
Examples
2.09455148154232659148238654... = 2 + 1/(10 + 1/(1 + 1/(1 + 1/(2 + ...))))
References
- David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 27.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- G. Xiao, Contfrac
- Index entries for continued fractions for constants
Crossrefs
Cf. A007493.
Programs
-
Mathematica
ContinuedFraction[ 1/3*(135/2 - (3*Sqrt[1929])/2)^(1/3) + (1/2*(45 + Sqrt[1929]))^(1/3) / 3^(2/3), 100]
-
PARI
{ allocatemem(932245000); default(realprecision, 21000); x=NULL; p=x^3 - 2*x - 5; rs=polroots(p); r=real(rs[1]); c=contfrac(r); for (n=1, 20001, write("b058297.txt", n-1, " ", c[n])); } \\ Harry J. Smith, May 03 2009
-
PARI
contfrac(polrootsreal(x^3-2*x-5)[1]) \\ Charles R Greathouse IV, Apr 14 2014
Comments