A007496 Numbers n such that the decimal expansions of 2^n and 5^n contain no 0's (probably 33 is last term).
0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 33
Offset: 1
References
- J. S. Madachy, Madachy's Mathematical Recreation, "#2. Number Toughies", pp. 126-8, Dover NY 1979.
- C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory. Oxford Univ. Press, 1966, p. 89.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Leroy C. Dalton & Henry D. Snyder, Topics for Mathematics Clubs, pp. 68-69, NCTM Reston VA 1983.
- G. P. Michon, What two integers without zero digits have a product of 1000000000?
- C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford Univ. Press, 1966, p. 89. (Annotated scanned copy).
- W. Schneider, NoZeros: Powers n^k without Digit Zero [Cached copy]
Programs
-
Maple
q:= n-> andmap(t-> not 0 in convert(t, base, 10), [2^n, 5^n]): select(q, [$0..40])[]; # Alois P. Heinz, Feb 03 2022
-
Mathematica
Range@(10^5) // Select[Last@DigitCount@(5^#) == 0 &] // Select[Last@DigitCount@(2^#) == 0 &] (* Hans Rudolf Widmer, Feb 02 2022 *)
-
PARI
isok(n) = vecmin(digits(2^n)) && vecmin(digits(5^n)); \\ Michel Marcus, Dec 28 2015
Extensions
Edited by N. J. A. Sloane, Oct 24 2009 at the suggestion of M. F. Hasler
Comments