cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007496 Numbers n such that the decimal expansions of 2^n and 5^n contain no 0's (probably 33 is last term).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 33
Offset: 1

Views

Author

Keywords

Comments

Intersection of A007377 and A008839. - Lekraj Beedassy, Jul 27 2004
From Jonathan Vos Post, Jul 20 2005: (Start)
Equivalently, numbers n such that 10^n is the product of two integers without any zero digits.
10^0 = 1 * 1
10^1 = 2 * 5
10^2 = 4 * 25
10^3 = 8 * 125
10^4 = 16 * 625
10^5 = 32 * 3125
10^6 = 64 * 15625
10^7 = 128 * 78125
10^9 = 512 * 1953125
10^18 = 262144 * 3814697265625
10^33 = 8589934592 * 116415321826934814453125. (End)
Searched for n up to 10^10. - David Radcliffe, Dec 27 2015

References

  • J. S. Madachy, Madachy's Mathematical Recreation, "#2. Number Toughies", pp. 126-8, Dover NY 1979.
  • C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory. Oxford Univ. Press, 1966, p. 89.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    q:= n-> andmap(t-> not 0 in convert(t, base, 10), [2^n, 5^n]):
    select(q, [$0..40])[];  # Alois P. Heinz, Feb 03 2022
  • Mathematica
    Range@(10^5) // Select[Last@DigitCount@(5^#) == 0 &] // Select[Last@DigitCount@(2^#) == 0 &] (* Hans Rudolf Widmer, Feb 02 2022 *)
  • PARI
    isok(n) = vecmin(digits(2^n)) && vecmin(digits(5^n)); \\ Michel Marcus, Dec 28 2015

Extensions

Edited by N. J. A. Sloane, Oct 24 2009 at the suggestion of M. F. Hasler