A007519 Primes of form 8n+1, that is, primes congruent to 1 mod 8.
17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353, 401, 409, 433, 449, 457, 521, 569, 577, 593, 601, 617, 641, 673, 761, 769, 809, 857, 881, 929, 937, 953, 977, 1009, 1033, 1049, 1097, 1129, 1153, 1193, 1201, 1217, 1249, 1289, 1297, 1321, 1361
Offset: 1
Examples
a(1) = 17 = 2 * 8 + 1 = (10001)_2. All numbers m from [0, 17) with the Hamming distance D(m, 17) = 2 are 0, 3, 5, 9. For m = 0, we can take h = 3, since 3 is drawn from (0, 17) and D(0, 3) = 2; for m = 3, we can take h = 5, since 5 from (3, 17) and D(3, 5) = 2; for m = 5, we can take h = 6, since 6 from (5, 17) and D(5, 6) = 2; for m = 9, we can take h = 10, since 10 is drawn from (9, 17) and D(9, 10) = 2. - _Vladimir Shevelev_, Apr 18 2012
References
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Ben Brubaker, 18.781, Fall 2007 Problem Set 5: Solutions to Selected Problems, MIT (2007).
- Peter Luschny, Binary Quadratic Forms
- Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 521.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Haskell
a007519 n = a007519_list !! (n-1) a007519_list = filter ((== 1) . a010051) [1,9..] -- Reinhard Zumkeller, Mar 06 2012
-
Magma
[p: p in PrimesUpTo(2000) | p mod 8 eq 1 ]; // Vincenzo Librandi, Aug 21 2012
-
Mathematica
Select[1 + 8 Range@ 170, PrimeQ] (* Robert G. Wilson v *)
-
PARI
forprime(p=2,1e4,if(p%8==1,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
-
PARI
forprimestep(p=17,10^4,8, print1(p", ")) \\ Charles R Greathouse IV, Jul 17 2024
-
PARI
lista(nn)= my(vpr = []); for (x = 0, nn, y = 0; while ((v = x^2+6*x*y+y^2) < nn, if (isprime(v), if (! vecsearch(vpr, v), vpr = concat(vpr, v); vpr = vecsort(vpr););); y++;);); vpr; \\ Michel Marcus, Feb 01 2014
-
PARI
A007519_upto(N, start=1)=select(t->t%8==1,primes([start,N])) #A7519=A007519_upto(10^5) A007519(n)={while(#A7519
A007519_upto(N*3\2, N+1))); A7519[n]} \\ M. F. Hasler, May 22 2025 -
SageMath
# uses[binaryQF] # The function binaryQF is defined in the link 'Binary Quadratic Forms'. Q = binaryQF([1, 4, -4]) print(Q.represented_positives(1361, 'prime')) # Peter Luschny, Jan 26 2017
Comments