A007564 Shifts left when INVERT transform applied thrice.
1, 1, 4, 19, 100, 562, 3304, 20071, 124996, 793774, 5120632, 33463102, 221060008, 1473830308, 9904186192, 67015401391, 456192667396, 3122028222934, 21467769499864, 148246598341018, 1027656663676600, 7148588698592956, 49884553176689584
Offset: 0
Examples
G.f. = 1 + x + 4*x^2 + 19*x^3 + 100*x^4 + 562*x^5 + 3304*x^6 + 20071*x^7 + 124996*x^8 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0 to 100 by T. D. Noe)
- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating functions for generating trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry and Aoife Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.8.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Z. Chen and H. Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 arXiv:1608.02448 [math.CO], 2016. Eq. (1.13) a=1, b=3.
- C. Coker, A family of eigensequences, Discrete Math. 282 (2004), 249-250.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 443
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 11.
- N. J. A. Sloane, Transforms
Programs
-
Maple
A007564_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1; for w from 1 to n do a[w] := a[w-1]+3*add(a[j]*a[w-j-1],j=1..w-1) od; convert(a, list) end: A007564_list(21); # Peter Luschny, May 19 2011
-
Mathematica
a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + 3 Sum[a[k-1]a[n-k],{k,n-1}] ; Table[a[n],{n,0,10}] (* David Callan, Aug 25 2009 *) Table[Hypergeometric2F1[-n, 1 - n, 2, 3], {n, 0, 22}] (* Arkadiusz Wesolowski, Aug 13 2012 *) Table[(2^n (LegendreP[n+1, 2] - LegendreP[n-1, 2]) + 2 KroneckerDelta[n])/(6n+3), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *) CoefficientList[Series[(1+2x-Sqrt[1-8x+4x^2])/(6x),{x,0,30}],x] (* Harvey P. Dale, Feb 07 2016 *)
-
PARI
{a(n) = if( n<1, n==0, sum( k=0, n, 3^k * binomial( n, k) * binomial( n, k+1)) / n)} /* Michael Somos, Sep 28 2003 */
-
PARI
{a(n) = if( n<0, 0, n++; polcoeff( serreverse( x * (1 - 3*x) / (1 - 2*x) + x * O(x^n)), n))} /* Michael Somos, Sep 28 2003 */
-
PARI
a(n) = (2^n*(pollegendre(n+1,2)-pollegendre(n-1,2)) + 2*(n==0))/(6*n+3); \\ Michel Marcus, Nov 02 2015
-
PARI
x='x+O('x^100); Vec((1+2*x-sqrt(1-8*x+4*x^2))/(6*x)) \\ Altug Alkan, Nov 02 2015
Formula
G.f.: (1+2*x-sqrt(1-8*x+4*x^2))/(6*x). - Emeric Deutsch, Nov 03 2001
a(0)=1; for n>=1, a(n) = Sum_{k=0..n} 3^k*N(n,k) where N(n,k) = (1/n)*binomial(n, k)*binomial(n, k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 24 2003
a(n) = Sum_{k=0..n} A088617(n, k)*3^k*(-2)^(n-k). - Philippe Deléham, Jan 21 2004
With offset 1: a(1) = 1, a(n) = -2*a(n-1) + 3*Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
D-finite with recurrence a(n) = (4*(2n-1)*a(n-1) - 4*(n-2)*a(n-2)) / (n+1) for n>=2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005
From Paul Barry, Dec 15 2008: (Start)
G.f.: 1/(1-x/(1-3x/(1-x/(1-3x/(1-x/(1-3x/(1-x/(1-3x........ (continued fraction).
The g.f. of a(n+1) is 1/(1-4x-3x^2/(1-4x-3x^2/(1-4x-3x^2/(1-4x-3x^2.... (continued fraction). (End)
a(0) = 1, for n>=1, 3a(n) = A047891(n). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
a(n) = upper left term in M^n, M = the production matrix:
1, 1
3, 3, 3
1, 1, 1, 1
3, 3, 3, 3, 3
1, 1, 1, 1, 1, 1
...
- Gary W. Adamson, Jul 08 2011
G.f.: A(x)= (1+2*x-sqrt(1-8*x+4*x^2))/(6*x)= 1/G(0); G(k)= 1 + 2*x - 3*x/G(k+1); (continued fraction, 1-step ). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ sqrt(6+4*sqrt(3))*(4+2*sqrt(3))^n/(6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
a(n) = 2^n/sqrt(3)*LegendreP(n,-1,2) for n >= 1, where LegendreP is the associated Legendre function of the first kind, in Maple's notation. - Robert Israel, Mar 24 2015
Comments